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ABSTRACT 

This study uses design science research to integrate marketing, engineering, and 

economic aspects into a single approach to conceptually design lucrative product 

families. In this context, the traditional stages of design science research methodologies 

are decomposed into 32 steps to provide practical guidance on the artifacts’ design and 

evaluation. By following these steps, a field problem gives rise to a method, entitled 

Market-Driven Modularity (MDM), which is validated through a series of practical 

applications and experts’ judgments. The main output of this process, the MDM, 

consists of an integrated method to conceptually design modular product families that 

balance the fulfillment of market needs and the resulting profitability to achieve them. 

To do that MDM uses the discrete choice modeling for quantifying the customers’ 

preferences, modularity as a mechanism to provide product variety, the product family 

as a strategy to manage the trade-off between variety and cost, and profit as a 

moderating variable to balance the level of accomplishment of the customers’ needs. In 

order to provide a better understanding of the proposed method, this study also presents 

an illustrative application of the MDM within the development process of a family of 

collaborative robotic palletizers for multiple market segments. The results indicate, that 

even from a deterministic perspective and under a context of low data availability, the 

two MDM outcomes, a lucrative product family structure, and the decision on 

investment in the product family design, are reasonably stable. 

 

Keywords: design science research; product family design; modularity. 

 

 

 



RESUMO 

Esta pesquisa utiliza a ciência do projeto para integrar variáveis de marketing, 

engenharia e economia em uma única abordagem para projetar famílias de produtos 

economicamente orientadas ao mercado. Neste contexto, os estágios tradicionais das 

metodologias de pesquisa em ciência de projetos são decompostos em 32 etapas de 

forma a prover orientações práticas sobre o projeto e avaliação de artefatos. Por meio 

desta sequência de passos, um problema de campo dá origem a um método, intitulado 

Modularidade Orientada ao Mercado (MOM), o qual é validado através de um conjunto 

aplicações práticas combinadas com opiniões de especialistas. A principal saída deste 

processo, o MOM, consiste em um método integrado para projetar conceitualmente 

famílias de produtos modulares que equilibrem o atendimento das necessidades do 

mercado com as vantagens econômicas de atendê-las. Para tal, o MOM, utiliza a 

modelagem de escolhas discretas para quantificar as preferências dos clientes, a 

modularidade como mecanismo para prover variedade, a família de produtos para 

equilibrar o “trade-off” entre variedade e custo, e o lucro como variável moderadora 

para balancear o nível de atendimento das necessidades dos clientes. Com o intuito de 

prover um melhor entendimento do método proposto, este estudo também apresenta 

uma aplicação ilustrativa do MOM no projeto de uma família de paletizadores robóticos 

colaborativos para múltiplos segmentos. Os resultados apontam, que mesmo de uma 

perspectiva determinística e em um contexto de baixa disponibilidade de dados, as duas 

saídas do método MOM, a estrutura da família de produtos economicamente orientada 

ao mercado, e a decisão sobre investir no projeto da família de produtos, se apresentam 

razoavelmente estáveis. 

 

Palavras-chave: ciência do projeto; projetos de famílias de produtos; modularidade. 
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1 INTRODUCTION  

The ever-increasing diversity of customers’ needs has been pushing companies 

to provide more product variants without sacrificing production efficiency (Jiao, 

Simpson and Siddique, 2007). In industry and academy alike, the negative impact of 

product variety on operational performance has been traditionally addressed by two 

complementary approaches: the product line planning and product family design (Miao 

et al., 2017). The product line planning consists of optimally selecting the group of 

products to be marketed to one specific market (Kahn, 2012), while the product family 

design consists of designing a set of products sharing common elements yet target 

different market segments (Simpson et al., 2014). 

Although numerous product line planning methods in management science and 

marketing literature deal with the selection problem using various objectives derived 

from profit, few of them explicitly address product design details not directly perceived 

by customers (Jiao, Simpson and Siddique, 2007). These approaches normally assume 

that any combination of product attributes can somehow be attained by design engineers 

post hoc (Michalek et al., 2011). In contrast, most existing product family design 

approaches are targeted at identifying an optimal commonality decision in order to 

minimize cost while meeting pre-specified performance tiers (Kumar, Chen and 

Simpson, 2009). As a result, these engineering approaches do not sufficiently examine 

broader business indicators such as demand and profit (Michalek et al., 2011). 

The product family design is challenging for many aspects, and addressing its 

front-end issues is a complex activity (Colombo et al., 2019). In general, the front-end 

issues are subdivided into four prevalent classes of design problems: (i) product family 

positioning, (ii) market-driven product family design, (iii) product family modeling, and 

(iv) product family configuration. The first two classes account for the marketing-
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related issues, which include customer involvement, product portfolio design, product 

family positioning, and transition or mapping from customer needs to functional 

requirements. While the last two classes are grounded on engineering-related issues, 

which include product family configuration, product architecture, design of families and 

platforms, leveraging commonality and modularity, and optimization of the family and 

platform design (Simpson et al., 2014). 

A recent study, concerning 72 methods for designing module-based product 

families, has shown that 1.4% of methods address the four classes of design problems 

concurrently. Among those methods (41.7%) considering marketing-related issues in its 

formulation, less than 7% derive the desired attributes in a product straight from the 

customers. Still from this study, it is seen that only 15.3% of methods account for 

enterprise-level indicators in product family configuration (Gauss, Lacerda and Miguel, 

2020) (see Section 3 – Article 1). Findings that comply with previous research 

indications of lacking methods integrating marketing, engineering, and economic 

aspects into product family design  (Jiao, Simpson and Siddique, 2007; Kumar, Chen 

and Simpson, 2009; Colombo et al., 2019). 

The problem is that marketing and engineering issues are highly interdependent 

in product family design. Moreover, the coupled relationships between them imply that 

any change in one domain can potentially influence the outputs of the other, with both 

affecting the economic benefits of an enterprise (Chen, Hoyle and Wassenaar, 2013). 

Therefore, in the design of optimal or near-optimal product families, marketing, 

engineering, and economic aspects cannot be pursued separately or even sequentially 

(Luo, 2011).  
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1.1 Research Problem 

In this context, the problem this research poses is the missing link between 

marketing and engineering domains into product family design; and the undesirable 

effect resulting from it is the development of non-profitable product families. 

In general, the economic benefit of a product family 𝑗 to an enterprise, typically 

profit (𝑉), is defined as a function of demand (𝑄), price (𝑃), and cost (𝐶) of the 𝑖 

product variants compounding the family, as shows the Equation 1 (Dong, Shao and 

Xiong, 2011; Chen, Hoyle and Wassenaar, 2013). 

𝑉𝑗 = ∑𝑄𝑖. (𝑃𝑖 − 𝐶𝑖)

𝑛

𝑖=1

 1 

These enterprise-level indicators have an implicit interdependence resulting 

from the elements of a modular product family structure according to illustrate Figure 1.  

 

Figure 1. Systemic structure of product family design. 
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Where, the translation of customer needs into tangible specifications gives rise to the 

functional requirements (Yu et al., 2015). The functional requirements not only 

integrate the product family architecture but also influences the formulation of the 

design parameters (Suh, 1998). The mapping between functional requirements and 

design parameters generates the product family architecture (Ulrich, 1995), that after 

decomposed, results in a set of common and distinctive modules compounding the 

modular product family structure (Otto et al., 2016). The combination of common 

modules, also referred to as platforms, along with the distinctive modules, make-up 

different product variants to fulfill the variety of products required by the market  (Li, 

Huang and Newman, 2008). The distinctive modules positively influence the overall 

ability of a family member to meet the customer desired attributes (Jiao and Tseng, 

1999a). The resulting customer perceived value impacts the demand and the level of 

distinctiveness of the product’s offering in the market segment (Chen, Hoyle and 

Wassenaar, 2013). The level of product distinctiveness has an impact on price, which 

consequently influences back the demand (Dong, Shao and Xiong, 2011). The 

drawback of distinctive modules is the increase in cost, which can be balanced by the 

number of common modules used to compose the variants (Farrell and Simpson, 2008). 

The cost influences the price and is indirectly influenced by demand (Kumar, Chen and 

Simpson, 2009), and these three variables together determine the profit. 

The systemic structure presented in Figure 1 shows the coupling relationships 

between marketing and engineering aspects into product family design, and how they 

affect broader business indicators such as cost, demand, price, and profit (Kumar, Chen 

and Simpson, 2009; Luo, 2011; Michalek et al., 2011; Chen, Hoyle and Wassenaar, 

2013). But integrating these three domains into product family design is not trivial 

(Colombo et al., 2019). 
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Over the years, active work in developing methods to design product families 

has been done (Borjesson and Hoelttae-Otto, 2014; Otto et al., 2016). Among those 

methods related to this research, the one encompassing four classes of design problems 

is the work of Jiang and Allada (2005). However, this method assumes the modules’ set 

already exists, being deeply sensitive to the ability of extant modules in accomplishing 

the customer desired attributes. Besides that, the product family configuration is used to 

configure one variant at a time instead of building a product family structure. In like 

manner, other methods only entail the three first classes of design problems (Jiao and 

Tseng, 1999a; Asan, Polat and Serdar, 2004; Hsiao and Liu, 2005; Kazemzadeh et al., 

2009; Hsiao et al., 2013; Sahin-Sariisik et al., 2014; Ma and Kim, 2016; Pakkanen, 

Juuti and Lehtonen, 2016). But the main limitation of them lies in the inability to 

combine the designed modules into product family variants or even selecting the most 

adequate ones to compose the product family structure.  

There is another group of methods, encompassing the product family modeling, 

which focuses on modules identification (Thevenot et al., 2007; Arciniegas and Kim, 

2011; Agard and Bassetto, 2013; AlGeddawy and ElMaraghy, 2013; Li et al., 2013; 

Borjesson and Hoelttae-Otto, 2014; Aydin and Ulutas, 2016; Ma et al., 2016; Hou et al., 

2017, 2018; Miao et al., 2017). Within this group, a few methods, if any, perform the 

functional and physical decomposition concurrently. Besides that, these approaches 

occasionally measure the quality of the clustering solution, indicating in this way its 

open-loop nature. Still from this group, some approaches combine the product family 

positioning with product family modeling (ElMaraghy and AlGeddawy, 2012; Simpson 

et al., 2012; Fan et al., 2015; Miao et al., 2017), while others combine the market-

driven product family reasoning with the product family modeling (Dahmus, Gonzalez-

Zugasti and Otto, 2001; Zhang, Tor and Britton, 2006; Du, Jiao and Tseng, 2006; 
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Krishnapillai and Zeid, 2006; Meng, Jiang and Huang, 2007; Stone et al., 2008; Park et 

al., 2008; Bonjour et al., 2009; Yan and Stewart, 2010; Emmatty and Sarmah, 2012; 

Yang, Yu and Jiang, 2014; Wei et al., 2015; Jung and Simpson, 2016; Cheng et al., 

2017; Bejlegaard et al., 2018; Wang et al., 2018). In both, less than a quarter, derive the 

customer desired attributes straight from the customers. 

The last group of methods focuses on the product family configuration. More 

specifically in the process of mixing, matching, and scaling modules to generate product 

family variants (Tucker and Kim, 2008; Jiao, 2012; Pate, Patterson and German, 2012; 

Hanafy and Elmaraghy, 2015; Goswami, Daultani and Tiwari, 2017; Xiao et al., 2018). 

In this group, the major part, solve the combinatorial and parametric problem through 

meta-heuristics and some use enterprise-level indicators to compound the objective 

function. Some methods also consider the product family design and configuration 

being performed together (Rai and Allada, 2003; Li, Huang and Newman, 2008; Li and 

Huang, 2009; Dong, Shao and Xiong, 2011; Chowdhury et al., 2016; Baylis, Zhang and 

McAdams, 2018). However, they assume the modules’ set already exists, and use the 

configuration process to generate product family variants instead of building product 

family structures. Additionally, nor a threshold to evaluate if the variants instantiated 

satisfy the desired attributes in a product, neither feedbacks leading to new modules’ 

developments are found. Moreover, it is not explicit in these works, the product family 

configuration supporting or even playing the role of product line planning, an issue that 

has been traditionally dealt with in the management science and marketing literature 

(Jiao, Simpson and Siddique, 2007). 

Synthesizing, there is a lack of integrated approaches modeling the customers’ 

preferences and using it to design and configure gainful product family structures. 
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Therefore, the question this research poses is how to integrate marketing, engineering, 

and economic aspects into a single approach to design lucrative product families? 

1.2 Objectives 

In this sense, the primary objective of this research is to integrate marketing, 

engineering, and economic aspects into a single method to conceptually design lucrative 

product families. The specific objectives of this research include: 

(1) Critically analyze the existing methods addressing modularity into product 

family design; 

(2) Critically analyze the existing methods addressing market considerations into 

product family design;  

(3) Design and evaluate the proposed method regarding pragmatic validity and 

practical relevance; 

(4) Apply the proposed method in a complex made-up case or real situation. 

1.3 Justification 

As mentioned before, active work in developing methods to design product 

families has been performed over the past two decades (Borjesson and Hoelttae-Otto, 

2014; Otto et al., 2016). However, they have been developed independently of one 

another, and it can be daunting to try to compare the methods and understand which 

approach might be suitable when or how the methods might interlink, if at all (Simpson 

et al., 2014). As a result, the transfer of these methods to industrial practice is inhibited 

by the seemingly broad array of material without a coherent organizing structure to 

compare development process tasks and the associated available methods, techniques, 

and tools (Otto et al., 2016). Therefore, studies organizing these methods within the 
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product development process are necessary to support future research in this field 

(Bonvoisin et al., 2016). In addition to the theoretical aspects, the increasing adoption of 

modularisation in organizations requires more uniform and accurate definitions to 

characterize and study this phenomenon (Piran et al., 2016; Frandsen, 2017). In this 

sense, the first contribution of this research lies in the integrative connection among 

existing methods to design module-based product families. An integration performed in 

the form of a functional model and structured classes of design problems, with both 

together serving as a meta-method for organizing the research in the field of module-

based product design as well as a roadmap for implementing it in industry. 

Equally important is the involvement of customer preferences into engineering 

design decisions, an issue that has received remarkable attention recently (Simpson et 

al., 2014; Colombo et al., 2019). While different product family variants may call for 

similar requirements, previous researches have shown that they might not be equally 

preferred by customers (Van Wie et al., 2007). Therefore, procedures such as market 

segmentation (Farrell and Simpson, 2008), the transition or mapping from customers’ 

desired attributes to engineering specifications (Stone et al., 2008), customers’ choice 

modeling (Jiao, 2012), among others, have been helpful in product attributes selection, 

family configuration, and portfolio optimization. In that direction, the second 

contribution of this work comprises the identification of market-related instances 

complementing the functional model and the structured classes of design problems on 

module-based product family design. 

However, using only customer and competitor information to set targets without 

considering the engineering aspects or other enterprise-level objectives, such as market 

share and potential profit, can result in targets that can never be achieved in practice 

(Aungst, Barton and Wilson, 2003). Moreover, the costs incurred to create, sustain or 
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use product families might not be worth the customization benefits (Ulrich, 1995; 

Hölttä-Otto and De Weck, 2007). For that reason, the level of accomplishment of 

customers’ needs must be balanced by the economic advantages of meeting them (Chen, 

Hoyle and Wassenaar, 2013). Given the previous research indications of lacking 

approaches modeling the customers’ preferences and using it to design and configure 

gainful product family structures, the third contribution of this research consists of the 

proposition of an integrated method to conceptually design modular product families 

that balance the fulfillment of market needs and the resulting profitability to achieve 

them. This is beneficial for two main reasons. First, the demand of potential product 

family variants can be compared against competing alternatives on the market, so that 

the economic benefits of a product family design can be assessed before making 

relevant investments on it, preventing in this way the development of non-profitable 

product families (Simpson et al., 2014). Then, by highlighting the most valuable 

combinations, manufacturers can prioritize the modules to be developed at subsequent 

design stages (Colombo et al., 2019), which directly implies the reduction of design and 

manufacturing costs as well as in shorter time-to-market (Ulrich and Tung, 1994). 

Finally, the product family design, as well as other engineering disciplines, is 

typically concerned with construction problems related to not yet existing entities (van 

Aken and Romme, 2009; Vaishnavi, Kuechler and Petter, 2017). This conception 

complies with the goals of research performed under the design science paradigm, 

which seeks to produce knowledge to solve real problems or to design something that 

does not yet exist (Simon, 1996; van Aken, 2005). Despite conceptual coupling between 

product family design and design science, besides the works of Koh, Caldwell, and 

Clarkson (2013) and Andre and Elgh (2018), no other study has been conducted by 

design science research in this field. However, these studies lack practical guidance on 
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artifact’s design and evaluation. Issues not derived from the research on product family 

design, or any other field, but from the design science research methodologies that only 

approach the research conduction from higher abstraction levels. 

Different methods for conducting research based on design science exist in the 

literature (Bunge, 1980; Nunamaker, Chen and Purdin, 1990; Takeda et al., 1990; 

Eekels and Roozenburg, 1991; Walls, Wyidmeyer and Sawy, 1992; Cole, 2005; Gregor 

and Jones, 2007; Peffers et al., 2007; Baskerville, Pries-Heje and Venable, 2009; 

Alturki, Gable and Bandara, 2011; van Aken, Berends and van der Bij, 2012; Dresch, 

Lacerda and Antunes Jr, 2015). Despite the differences in methods’ steps, they share the 

same outcome, which is the well-tested, well-understood, and well-documented 

innovative generic design that has been field-tested to establish pragmatic validity (van 

Aken, Chandrasekaran and Halman, 2016). According to Kvale and Brinkman in Van 

Burg (2011), the pragmatic validity has to do with “the extent to which the research 

creates guidelines that generate the desired outcomes when those guidelines are 

applied”. However, the extant design science research literature does not provide 

sufficient instruction on the artifact’s design (Gacenga et al., 2012). Moreover, there is 

little or no guidance on how or why one can or should choose among the different 

paradigms or methods to achieve design science research evaluation goals (Venable, 

Pries-Heje and Baskerville, 2016; Coetzee, 2019; Gassel, Reymen and Maas, 2019). In 

this sense, regarding the methodological aspects, the last contribution of this research 

lies in providing practical guidance on the artifact’s design and evaluation, enhancing in 

this way the pragmatic validity of design science research methodologies. 
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1.4 Research Structure 

This research consists of an article-based dissertation, structured in seven 

sections. In the sequence of this first section, which presents initial research 

considerations, Section 2 describes the research approach along with relevant 

methodological issues. The results retrieved from the procedures adopted in Section 2 

are presented in Sections 3, 4, 5, and 6, wherein each section consists of an article. 

Table 1 depicts the relationship between dissertation objectives, sections, and articles. 

Section 3 (Article 1) presents a systematic literature review and meta-synthesis 

of 72 articles (1999-2019) published in peer-reviewed journals concerning the module-

based product family design. As a result, a functional model synthesizing the methods 

to design module-based product families along with its respective structured classes of 

design problems have been formulated. Section 4 (Article 2) follows the same pattern 

but encompassing 21 articles regarding the market-driven product family design. 

Section 5 (Article 3) decomposes the traditional stages of design science 

research methodologies into 32 steps to provide practical guidance on the artifacts’ 

development and evaluation. By following these steps, a field problem gives rise to a 

method, entitled Market-Driven Modularity (MDM), which is validated through a series 

of practical applications and experts’ judgments. Section 6 (Article 4), in turn, presents 

an illustrative application of the MDM within the development process of a family of 

collaborative robotic palletizers for multiple market segments. Finally, Section 7 

provides the research contributions and limitations as well as its future directions. 
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Table 1.  The relationship between dissertation objectives, sections, and articles. 

Primary objective Specific objective Section and scope Main contributions Article Journal to be submitted 

Integrate marketing, 

engineering, and economic 

aspects into a single method 

to conceptually design 

lucrative product families. 

Critically analyze the existing 

methods addressing modularity 

into product family design. 

Section 3 - Systematic literature 

review and meta-synthesis of 72 

articles (1999-2019) published 

in peer-reviewed journals 

concerning the module-based 

product family design. 

▪ The functional model 

synthesizing the methods to 

design module-based product 

families; 

▪ The structured classes of 

design problems; 

▪ The construction heuristic to 

build and assess functional 

models and classes of design 

problems. 

Article 1 - Module-Based 

Product Family Design: 

Systematic Literature Review 

and Meta-Synthesis. 

Journal of Intelligent 

Manufacturing (IF: 3.535), which 

features articles on new models, 

solutions, methodologies, 

algorithms, and tutorials on product 

development, with no limitations 

concerning the number of words, 

figures, and tables. 

 
Critically analyze the existing 

methods addressing market 

considerations into product 

family design. 

Section 4 - Systematic literature 

review and meta-synthesis of 21 

articles (1999-2019) published 

in peer-reviewed journals 

concerning the market-driven 

product family design. 

▪ The functional model 

synthesizing the methods to 

design market-driven product 

families; 

▪ The structured classes of 

design problems; 

▪ The identification of market-

related instances 

complementing the functional 

model and the structured 

classes of design problems 

regarding the module-based 

product family design. 

Article 2 - Market-Driven 

Product Family Design: 

Systematic Literature Review 

and Meta-Synthesis. 

Research in Engineering Design 

(IF:2.000), which features articles 

on design theory and methodology 

in engineering, with no limitations 

concerning the number of words, 

figures, and tables. 

 
Design and evaluate the 

proposed method regarding 

pragmatic validity and practical 

relevance. 

Section 5 - Design and 

evaluation of the proposed 

method, entitled Market-Driven 

Modularity (MDM), under the 

design science paradigm. 

▪ The MDM itself; 

▪ The MDM’s construction and 

contingency heuristics; 

▪ Practical guidance on the 

artifact’s design and 

evaluation; 

▪ The quantitative approach to 

measure pragmatic validity 

and practical relevance. 

Article 3 - Market-Driven 

Modularity: A Design Method 

Developed Under Design 

Science Paradigm. 

Journal of Operations Management 

(IF: 7.776), which features articles 

on design science research strategy 

for operations management issues, 

with no limitations concerning the 

number of words, figures, and 

tables. 

 Apply the proposed method in a 

complex made-up case or real 

situation. 

Section 6 - Detailed application 

of the proposed method in a 

complex made-up case 

performed from an engineering 

design perspective. 

▪ The MDM in its functional 

state. 

Article 4 - Market-Driven 

Modularity: An Integrated 

Method to Conceptually Design 

Modular Product Families. 

Journal of Intelligent 

Manufacturing (IF: 3.535), which 

features articles on new models, 

solutions, methodologies, 

algorithms, and tutorials on product 

development, with no limitations 

concerning the number of words, 

figures, and tables. 
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2 RESEARCH DESIGN 

The product family design, as well as other engineering disciplines, is typically 

concerned with construction problems related to not yet existing entities (van Aken and 

Romme, 2009; Vaishnavi, Kuechler and Petter, 2017). This conception complies with 

the goals of research performed under the design science paradigm, which seeks to 

produce knowledge to solve real problems or to design something that does not yet exist 

(Simon, 1996; van Aken, 2005). Given this conceptual coupling, the present work 

followed the design science research methodology proposed by Dresch, Lacerda, and 

Antunes (2015). The 12 stages originally conceived by them were decomposed into 32 

steps for better guiding the process of the artifact’s design and evaluation. 

Figure 2 synthesizes the approach adopted in this research, which started by 

identifying the problem to be solved in step 1.1. At initial iteration cycles between steps 

1.1 and 2.1, the problem was just a “potential problem”, and after understanding it in-

depth, at step 2.1, it became the research problem to be studied at subsequent stages. 

This phase of awareness on the problem was supported by the Systems Thinking 

(Senge, 1990), and its expected outcomes were the understanding of the problem, the 

formalized aspects of the problem, and the problem-related topics to be investigated in 

the third stage, the systematic literature review. 

Since two topics of investigation were defined, the systematic literature review 

was subdivided into two parallel flows, one for each topic. The steps from 3.1 to 3.5, 

and from 3.6 to 3.10 followed the same procedures. The difference between them lied in 

the topic under investigation and the input flow coming from step 3.4 to 3.8.
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Figure 2. Research approach. 
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In this stage, the process began with the formulation of a search strategy protocol, as 

suggested by Table 2. The protocol gave rise to the outputs of steps 3.1 and 3.6, which 

were used for searching and selecting the primary studies, as indicated by Figure 2. The 

primary studies found in steps 3.2 and 3.7 were assessed for eligibility in steps 3.3 and 

3.8. Those studies in compliance with the selecting criteria were chosen for review and 

those who not, were discarded and had the excluding statistics recorded according to 

illustrate Figure 3 and Table 3. 

Table 2. The search strategy protocol adapted from Morandi and Camargo (2015). 

Conceptual framework Concepts that led to conducting the systematic review. May include a summary of the 

problem situation that is the focus of the review, as well as the known concepts and results. 

Context The context in which the research is being conducted: may include but is not limited to an 

industry, a sector or a location. For example, machine manufacturers located in Germany. 

Time horizon The time horizon being considered for the review. For example, studies published since 1990. 

Theoretical currents A strategy may or may not limit the theoretical currents to be searched for. For example, 

platform-based product family design. 

Languages Languages to be considered in the searching process 

Research question The question to be answered by the systematic review. Might be the review question itself or 

derived from it.  

Review strategy Aggregative or Configurative. 

Selecting criteria Criteria that will serve to determine the inclusion or exclusion of primary studies. 

Search terms Terms that will be used to search the databases. Consider not only the terms themselves but 

also the Boolean and proximity operators (AND, OR, NOT, NEAR, WITHIN, ADJ). 

Search sources Databases: EBSCO, Web of Science, Scopus. 

Proceedings: ASME, IoTSMS, ICII, ETFA 

Internet: Google scholar. 

Others. 

In steps 3.4 and 3.9, the content of each selected study was analyzed in-depth 

(Bardin, 1993), and the artifacts resulting from this process came to integrate the 

solution field of this research. This work refers to an artifact as being a method or a 

technique intended to solve product design problems. In general, a method can be 

understood as a group of systematic steps (sub-functions) needed to accomplish specific 

product design objectives while a technique consists of a set of related procedures 

required to execute each step of the method (March and Smith, 1995). In this sense, at 

steps 3.5 and 3.10, the sub-functions compounding the structure of methods found were 
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combined into a functional model, and its respective techniques were organized and 

cataloged. The outputs of these steps were the function structure of the methods (𝐹𝑆𝑖), 

the classification scheme of techniques (𝐶𝑆𝑖), and the classes of design problems (𝐶𝑝𝑖) 

related to each parallel flow that travelled through stage 3. 

 

Figure 3. Generic results of the search and eligibility. 

Table 3. Example of excluding statistics. 

No. of exclusions Percentage Excluding criteria 

𝑛𝑒1 = ∑ 𝑧𝑖 + 𝑖𝑖 + 𝑗𝑖
𝑛

𝑖=1
 [𝑛𝑒1 (𝑍 − 𝐼 − 𝐽)⁄ ]% criterion 1 

𝑛𝑒2 = ∑ 𝑧𝑖 + 𝑖𝑖 + 𝑗𝑖
𝑛

𝑖=1
 [𝑛𝑒2 (𝑍 − 𝐼 − 𝐽)⁄ ]% criterion 2 

𝑛𝑒𝑛 = ∑ 𝑧𝑖 + 𝑖𝑖 + 𝑗𝑖
𝑛

𝑖=1
 [𝑛𝑒𝑛 (𝑍 − 𝐼 − 𝐽)⁄ ]% criterion n 

𝑍 − 𝐼 − 𝐽 100 % Total 

The function structure consists of a graphical form of a functional model where 

its overall function is represented by a collection of sub-functions connected by the 

flows on which they operate (Stone and Wood, 2000). Figure 4 illustrates a generic 

function structure (𝐹𝑆𝑖), wherein each sub-function (𝑆𝑖) corresponds to an action 

intended to solve a particular design problem (𝑃𝑏𝑖). A sub-function can be performed 

by one or more techniques (𝑇𝑖) as shows the nonblank entries of the classification 
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scheme (𝐶𝑆𝑖) presented in Table 4, i.e. [𝐶𝑆]𝑚𝑥𝑛 = [𝑆]𝑚[𝑇]𝑛 (Pahl et al., 2007). The 

execution order of each sub-function follows the causal relationship between the steps 

of the methods (𝑀𝑖) identified during the content analysis. The dashed lines around the 

sub-functions represent the classes of design problems (𝐶𝑝𝑖), defined here as a set of 

design problems sharing common characteristics and containing useful artifacts for their 

solution, i.e. 𝐶𝑝𝑖 = {𝑃𝑏𝑖, 𝑇𝑖 , 𝑀𝑖} (Dresch, Lacerda and Antunes Jr, 2015). The process of 

building functional models and structuring classes of design problems is detailed in 

Sections 3 and 4. 

 

Figure 4. Generic function structure (𝐹𝑆i). 

Table 4. Generic classification scheme of techniques (𝐶𝑆𝑖). 

Sub-functions 

(FSi) 

Techniques 

T1 T2 T3 T4 T5 

(Pb1) → S1 1 1    

(Pb2) → S2 
  1   

(Pb3) → S3 
 1    

(Pb4) → S4 
  1   

(Pb5) → S5 
   1  

(Pb6) → S6 
    1 

At stage 4, the issue was to aggregate the outcomes of the same nature coming 

from the two parallel flows of stage 3. This process started by combining the function 

structures 𝐹𝑆1 and 𝐹𝑆2 into a single model, i.e. 𝐹𝑆𝐴 = 𝐹𝑆1 ∪ 𝐹𝑆2. This task was 

performed in step 4.1, and the technique used for that purpose, Aggregating Function 

Chains Into Functional Models (Stone and Wood, 2000), is synthesized in Figure 5. 
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Figure 5. Formulation of the aggregated function structure of the methods (𝐹𝑆𝐴). 

Following the same reasoning, in step 4.2, the classification schemes 𝐶𝑆1 and 

𝐶𝑆2 were arranged into a single entity, i.e. 𝐶𝑆𝐴 = 𝐶𝑆1 ∪ 𝐶𝑆2, wherein the sub-functions 

co-occurring in both schemes were merged as indicated by the green fill in Figure 6. In 

step 4.3, the classes of design problems 𝐶𝑝1 and 𝐶𝑝2, were grouped and reorganized 

based on the co-occurrence among the design problems (𝑃𝑏𝑖), techniques (𝑇𝑖), methods 

(𝑀𝑖), evaluation approaches (𝐸𝑡𝑖), products classification (𝑃𝑡𝑖), and primary studies 

(𝑅𝑖). In this research context, the evaluation approach consists of the strategy adopted 

to test the artifact (method or technique) while the product classification relates to the 

type of goods used during the evaluation. The final product of this step was the 



 

32 

 

aggregated classes of design problems (𝐶𝑝𝐴) illustrated in Table 5. If at the end of this 

stage, a method that fully meets the needs to solve the problem was found, the process 

should be finished and the intervention, out of this research scope, should be planned. 

Otherwise, it should continue to step 5.1. 

 

Figure 6. Formulation of the aggregated classification scheme of techniques (𝐶𝑆𝐴). 

Table 5. Example of aggregated classes of design problems (𝐶𝑝𝐴). 

Classes of 

problems 

Design 

problems 

Artifacts Evaluation 

approach 

Products 

classification 

Primary 

studies Techniques Methods 

Cp1 

Pb1 
T1 

M1 Et1 

Pt1 

R1 

M2 Et2 R2 

T2 M3 Et1 R3 

Pb2 T3 
M2 Et2 R2 

M4 Et3 Pt2 R4 

Cp2 

Pb3 T2 M3 Et1 
Pt1 

R3 

Pb4 T3 
M2 

Et2 
R2 

M12 Pt4 R12 

Cp3 
Pb5 T4 M5 

Et4 
Pt3 R5 

Pb6 T5 M6 Pt4 R6 

Cp4 

Pb7 
T6 

M7 
Et1 

Pt1 

R7 

Pb8 M8 R8 

Pb9 T7 M9 Et1 R9 

Pb10 
T8 M10 Et2 

Pt4 
R10 

Pb11 
Pt3 

 T7 M11 Et3 Pt2 R11 
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Based on the boundary conditions imposed by the research problem, in step 5.1, 

the aggregated function structure of the methods (𝐹𝑆𝐴) was refined by abductively 

adding or removing sub-functions, or even function chains (𝐹𝑆𝑛), from its architecture, 

i.e., 𝐹𝑆𝑀 = 𝐹𝑆1 ∪ 𝐹𝑆2 ∪ 𝐹𝑆𝑛. The output here was the function structure of the 

proposed method (𝐹𝑆𝑀), which combines the existing knowledge and new propositions 

to address the problem under study, as shown in Figure 7. 

 

Figure 7. Example of the function structure of the proposed method (𝐹𝑆𝑀). 

With the function structure of the proposed method (𝐹𝑆𝑀) defined, the next 

issue was to select the most suitable techniques to execute its corresponding sub-

functions. This process took place at stage 6 and started by formulating the list of 

functional requirements (𝐹𝑅𝑀) that each sub-function of the method should fulfill to 

solve the problem. Table 6 gives an example of the 𝐹𝑅𝑀 defined at step 6.1. 

Then, in step 6.2, those techniques integrating the aggregated classification 

scheme (𝐶𝑆𝐴) were assessed against the functional requirements, among other criteria. 
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Since the techniques are only known qualitatively, the selecting procedure employed in 

this research was the Elimination and Preference (Pahl et al., 2007). From which, all 

unsuitable techniques were eliminated, and among the remaining ones, those that were 

patently better than the rest were given preference. 

Table 6. Example of the functional requirements of the method (𝐹𝑅𝑀). 

Classes of 
problems 

Design 
problems 

Inputs 
Sub-functions 

(𝐹𝑆𝑀) 
Outputs 

Functional 

requirements (𝐹𝑅) 
Techniques* 

C1 
Pb1 I1 S1 OS1 {𝐹𝑅𝑖 | ∀𝐹𝑅𝑖 ∈ Pb1} {T1,T2} 

Pb2 OS1 S2 OS2 {𝐹𝑅𝑖  | ∀𝐹𝑅𝑖 ∈ Pb2} T3 

C2 
Pb3 OS2 S3 OS3 {𝐹𝑅𝑖  | ∀𝐹𝑅𝑖 ∈ Pb3} T2 

Pb4 OS3 S4 OS4 {𝐹𝑅𝑖  | ∀𝐹𝑅𝑖 ∈ Pb4} T3 

C3 

Pb5 OS2 S5 OS5 {𝐹𝑅𝑖  | ∀𝐹𝑅𝑖 ∈ Pb5} T4 

Pb6 OS5 S6 OS6 {𝐹𝑅𝑖  | ∀𝐹𝑅𝑖 ∈ Pb6} T5 

Pb12 OS6 S12 OS12 {𝐹𝑅𝑖 | ∀𝐹𝑅𝑖 ∈ Pb12} {T6,T8} 

Pb13 OS12 S13 O4 {𝐹𝑅𝑖 | ∀𝐹𝑅𝑖 ∈ Pb13} AT1 

C4 

Pb7 I2 S7 OS7 {𝐹𝑅𝑖  | ∀𝐹𝑅𝑖 ∈ Pb7} T6 

Pb8 OS7 S8 OS8 {𝐹𝑅𝑖  | ∀𝐹𝑅𝑖 ∈ Pb8} T6 

Pb9 OS8 S9 OS9 {𝐹𝑅𝑖 | ∀𝐹𝑅𝑖 ∈ Pb9} T7 

Pb10 OS4, OS9 S10 OS10 {𝐹𝑅𝑖 | ∀𝐹𝑅𝑖 ∈ Pb10} T8 

Pb11 OS10 S11 O3 {𝐹𝑅𝑖 | ∀𝐹𝑅𝑖 ∈ Pb11} {T7,T8} 

        * Column added after the step 6.2 

In this sense, the use of a schematic selection chart provided a clear overview of 

the decision-making, wherein the unsuitable techniques were eliminated by the three 

first criteria applied in the sequence presented in Figure 8. Criteria A and B are suitable 

for yes/no decisions, and their application posed relatively few problems. Criterion C is 

grounded in the pragmatic validity, and its assessment required a deeper understanding 

of each technique. A preference was justified if, among the number of possible 

techniques, some reached better rates in the last three criteria (D, E, and F). Along the 

selection process, some techniques appeared to be inadequate for executing its 

corresponding sub-functions. When it happened, alternative techniques (𝐴𝑇𝑖), or even 

the development of new ones (𝐷𝑇𝑖) were proposed, as illustrated in Figure 8. It was also 

noted that, depending on the technique selected, it could influence back the functional 

model. In such situations, the function structure of the proposed method (𝐹𝑆𝑀) was 

revised as indicated by the feedback between steps 6.2 and 5.1. 
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Figure 8. A schematic selection chart adapted from Pahl et al. (2007). 

At stage 7, the internal environment of the artifact was defined (Simon, 1996). 

This process started by building the graphical representation of the method in step 7.1. 

Here, some conditional steps and feedbacks were included to refine the execution order 

of the method, as illustrated in Figure 9. Also, a narrative description was created to 

formalize the proper functioning of the internal environment of the method as well as to 

describe how it interacts with the external environment. Besides the graphical 

representation and the narrative description, the construction of the method required 

different approaches such as computational algorithms, prototypes, among others 

(Dresch, Lacerda and Antunes Jr, 2015). This task of building computational models 

and other supporting tools was performed in step 7.2, where the expected outcome was 

the method in its functional state (𝑉𝑖). At the end of the steps 7.1 and 7.2, some function 

structure refinements and new techniques were required as indicated in Figure 2. 

Pg.
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+ Yes -   Eliminate technique

- No ?  Collect information
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Figure 9. Graphical representation of the proposed method. 

The seven stages described so far accounted for the method’s development. The 

next issue was to evaluate its pragmatic validity and practical relevance. This process 

took place at stage 8 and began in step 8.1 with the method being tested by the 

researchers themselves in a simple made-up case. Those opportunities for improvement 

emerged from this first evaluation cycle, lead the process back to the steps 7.1 or 7.2. 

In step 8.2, the method was tested by third-party practitioners in simple made-up 

cases. At the end of this second cycle, the participants’ opinions have been captured 

through a questionnaire composed of closed and open questions, as illustrated by Figure 

10 (Malhotra and Birks, 2007). 
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Figure 10. Example of closed and open questions used in the questionnaire. 

After collecting the data, it was checked against inconsistent responses (Floyd and 

Fowler, 2014). Then the Median (�̃�) (Montgomery and Runger, 2011) and the Free-

Marginal Multirater Kappa (𝑘𝑓𝑟𝑒𝑒) (Randolph, 2005) were calculated for each closed 

question. For the open questions, in turn, the Content Analysis was used to derive the 

moderating variables (𝑀𝑉𝑖) and its respective frequencies (𝑓) (Bardin, 1993). In this 

context, the �̃� measures the amplitude of agreement, 𝑘𝑓𝑟𝑒𝑒 measures the level of 

agreement among the respondents, and 𝑓 measures how often the moderating variables 

(𝑀𝑉𝑖), supposed to reduce the amplitude of agreement, occur. Table 7 gives an example 

of the results of participants’ opinions, wherein the hierarchy between the top terms, 

constructs, dimensions, and moderating variables is depicted. In this table, the 

underlined numbers represent those values below the acceptable threshold adopted in 

this research, i.e. 𝑘𝑓𝑟𝑒𝑒 < 0,41 or �̃� < 3. Besides that, the characters within parentheses 

indicate to which question the dimension is related to. The results of participants’ 

opinions led to four scenarios and two actions, as shown in Table 8. 
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Table 7. Example of the results of participants’ opinions. 

Top term / Construct / Dimension / Moderating variable Resp. (n=10) 

  x̃ kfree f 

1.0 Pragmatic validity 3 0,66 - 

1.1 External environment  3 0,75 - 

1.1.1 (Q07) Company size 3 0,63 - 

...       

1.1.6 (Q17) Multiple market segments 3 0,63 - 

MV.01 Aesthetics requirements - - 1 

1.2 Internal environment 3 0,59 - 

1.2.1 (Q19) Steps' sufficiency 3 1,00 - 

MV.28 Complex products - - 1 

...       

1.2.4 (Q25) Applicability of techniques 3 0,20 - 

MV.06 Other existing techniques - - 1 

2.0 Practical relevance 3 0,70 - 

2.1 General utility 3 0,70 - 

2.1.1 (Q34) Customers' choice modeling 3 0,36 - 

MV.05 Uncertainty of estimated data - - 1 

...       

2.1.6 (Q44) Utility 3 0,63 - 

MV.09 Method's complexity - - 2 

Table 8. Scenarios and actions resulting from participants’ opinions. 

Id. Conditions Action 

1 𝑘𝑓𝑟𝑒𝑒 ≥ 0,41 and �̃� = 3 No changes in the method are required, and the process should go-ahead to the next step. 

2 𝑘𝑓𝑟𝑒𝑒 ≥ 0,41 and �̃� < 3 Changes in the method are required, and the process should go back to step 7.1 or 7.2. 

3 𝑘𝑓𝑟𝑒𝑒 < 0,41 and �̃� = 3 Changes in the method are required, and the process should go back to step 7.1 or 7.2. 

4 𝑘𝑓𝑟𝑒𝑒 < 0,41 and �̃� < 3 Changes in the method are required, and the process should go back to step 7.1 or 7.2. 

In scenarios 2, 3, and 4, the moderating variables (𝑀𝑉𝑖) were accessed to 

understand which part of the method should be changed. If, for any reason, it was 

impractical to implement all changes required, the most frequent 𝑀𝑉𝑖 were given 

preference. 

The same reasoning was employed with slight differences in steps 8.3 and 8.4. 

The first difference was that the method was presented to the experts and scholars 

instead of being tested by them. The second difference lied in the fact that, besides the 

open questions of the questionnaire, audio records and responses by e-mail were used as 

an additional source to obtain the moderating variables (𝑀𝑉𝑖). 

The last cycle consisted of testing the method by the researchers themselves in a 

complex made-up case or real situation. As well as in the first cycle, those opportunities 

for improvement emerged in this step, lead the process back to the steps 7.1 or 7.2. 
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Details on these five evaluation cycles such as cases of application, questionnaire, 

participants sampling and characterization, the learnings achieved, among other factors, 

are given in Section 5. 

The outputs of stage 8 are the duly evaluated method along with its construction 

and contingency heuristics (Dresch, Lacerda and Antunes Jr, 2015). The learnings 

achieved during the method’s design and evaluation were identified in step 9.1 and then 

cataloged as illustrated in Table 9 (Cole, 2005; van Aken, Berends and van der Bij, 

2012). In step 10.1, the research contributions, limitations as well its future directions 

were formalized (Vaishnavi, Kuechler and Petter, 2017). While in step 11.1, the 

proposed method, together with its construction and contingency heuristics, was 

generalized for a particular class of problems (Venable, 2006; Gregor, 2009). 

Table 9. Example of the learning log. 

Id. Entered by Cycle 
 
DSR step Subject Situation 

Recommendations  

& Comments 

Implemented in 

The 
number 

used to 

identify 
learning. 

The name of 
the individual 

who 

identified the 
learning. 

The testing 
cycle where 

the learning 

happened. 

 The step of 
the research 

method 

where the 
learning 

occurred. 

A brief 
headline 

describing 

the subject of 
the learning. 

A detailed 
description of 

the situation 

learned from. 

Recommendations and 
comments regarding the 

action taken, to help 

guide future research. 

Where the 
recommendation has 

been implemented, 

i.e. research strategy 
or artifact.  

Finally, the knowledge generated from the research process was compiled into 

four articles at stage 12. The first two articles encompassed the procedures and results 

retrieved from the two problem-related topics investigated in the systematic literature 

review stage. The third article entailed the entire process of design and evaluation of the 

proposed method. The fourth article covered the method in its functional state applied to 

a complex made-up case. As mentioned before, the results retrieved from the 

procedures adopted in Section 2 are presented in Sections 3, 4, 5, and 6, wherein each 

section consists of an article. 
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3 ARTICLE 1 - MODULE-BASED PRODUCT FAMILY DESIGN: 

SYSTEMATIC LITERATURE REVIEW AND META-SYNTHESIS 1 

1 Article accepted for publication in the Journal of Intelligent Manufacturing (JIM). 

Abstract: Increased demand for a greater variety of products has forced many 

companies to rethink their strategies to offer more product variants without 

sacrificing production efficiency. In this context, research has found that such a 

trade-off can be properly managed by exploiting the module-based product 

family (MBPF) design. Over the years, active work in developing methods to 

design MBPFs has been done. Nevertheless, many of them have been created, 

and consequently exist, in isolation from one other. As a result, the adoption of 

these methods in industry and academy alike is inhibited by the seemingly broad 

array of material without a coherent organizing structure. To bridge this gap, this 

paper aims at developing a meta-synthesis of 72 articles concerning MBPF 

design developed over the past 20 years through a systematic literature review. 

The research findings are synthesized in the form of a functional model and 

structured classes of design problems, wherein the existing methods to design 

MBPFs and their respective instances are connected. These entities together serve 

as a meta-method for organizing the research in the field of MBPF design as well 

as a roadmap for implementing MBPFs in the industry. The main contributions of 

this work include: (i) constructing a functional model that connects the design 

methods for MBPFs; (ii) suggesting structured classes of design problems that 

complement the functional model by cataloging the techniques meant to execute 

each sub-function of the model; (iii) proposing a construction heuristic to build 

and assess functional models and classes of design problems. 

Keywords: modularity; product family design; systematic literature review; 

meta-synthesis; functional model; structured classes of design problems. 

3.1 Introduction 

In today’s competitive global business environment, product variety can help 

manufacturing companies to increase sales and profits (Zhu, Li and Feng, 2017). 

However, increased variety can also lead to higher design and production costs as well 

as longer lead times for new variants (Simpson et al., 2014). In this sense, product 
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variety more than doubled between 1997 and 2012, while product life cycles reduced by 

about 25% (Andersen et al., 2017). The direct consequence of product variety on 

production is an exponentially increased number of process variations, such as different 

machines, tools, fixtures, set-ups, cycle times, and labor (Jiao, Simpson and Siddique, 

2007). As a result, the unit cost rises more than 20% when the variety of manufactured 

items doubles (Antunes et al., 2008). 

Under those circumstances, previous research stated that product family design 

is an effective strategy to provide variety at reduced costs (Simpson et al., 2014). In 

general, a product family refers to a set of products derived from a standard product 

platform to satisfy various market applications (Meyer and Lehnerd, 1997). Platforms, 

in turn, are intellectual and material assets shared across a family of products, to 

minimize manufacturing complexity (Erens and Verhulst, 1997). Coupled with that, 

authors advocate the modularity is the core of many supporting techniques for product 

family design (Simpson, Siddique and Jiao, 2006; Kong et al., 2009; Otto et al., 2016). 

Usually, there are two strategic objectives in applying modularity to a new product 

family (Simpson et al., 2014): (i) a technology strategy to increase product 

configurability and reduce engineering effort within individual product lines by 

eliminating duplicate and competitive technical solutions that are used to fulfill the 

same customer value, and (ii) a manufacturing strategy to reduce the number of 

different product lines by establishing a module system that embodies more customer 

value-driving variance. In this context, the prominent approach to product family design 

is through the development of module-based product families (MBPF), wherein product 

family members are instantiated by mixing and matching functional modules from the 

platform (Ulrich, 1995; Du, Jiao and Tseng, 2001). An alternative approach, considered 

as a subset of the former (Fujita and Yoshida, 2004), is through the development of a 
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scale-based product family, which consists of scaling one or more variables to change 

the platform specifications while common parameters remain constant (Simpson, 2004). 

Over the years, active work in developing methods to design MBPFs has been 

done (Borjesson and Hoelttae-Otto, 2014; Otto et al., 2016). However, they have been 

developed independently of one another, and it can be daunting to try to compare the 

methods and understand which approach might be suitable when or how the methods 

might interlink, if at all (Simpson et al., 2014). As a result, the transfer of these methods 

to industrial practice is inhibited by the seemingly broad array of material without a 

coherent organizing structure to compare development process tasks and the associated 

available methods, techniques, and tools (Otto et al., 2016). Therefore, studies 

organizing these methods within the product development process are necessary to 

support future research in this field (Bonvoisin et al., 2016). In addition to the 

theoretical aspects, the increasing adoption of modularisation in organizations requires 

more uniform and accurate definitions to characterize and study this phenomenon (Piran 

et al., 2016; Frandsen, 2017). 

Some literature reviews have been developed in that direction. For instance, 

Gershenson, Prasad, and Zhang (2003) present an overview of existing research on the 

definition of modular product design and its benefits. The same authors expand their 

first work by presenting another study of existing research on measures of product 

modularity and methods to achieve modularity in product design (Gershenson, Prasad 

and Zhang, 2004). In like manner, Jose and Tollenaere (2005) provide a review of the 

platform concept with a particular interest in modular design methodologies. Jiao, 

Simpson, and Siddique (2007) present a comprehensive review of the state-of-the-art 

research on the product family design. Fixon (2007) analyses sources on modularity and 

commonality concerning the subjects they have studied, the performance effects they 
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have investigated, and the tools they have applied in doing so. Simpson et al. (2014) 

present a novel state-of-the-art review on product family design focusing on research 

published after their first work. Bonvoisin et al. (2016) summarize published literature 

to introduce a common language in the field of product modularization and to build the 

theoretical basis of a multi-purpose approach. Piran et al. (2016) organizes 

modularization studies in a conceptual structure and classifies the articles analyzed into 

a specific modularization taxonomy concerning the study’s objective. Otto et al. (2016) 

link the different strands of platform research into logical sequences that can be 

practically used for product platform development. Frandsen (2017) employs a 

bibliometric analysis to identify the structures, the evolution of the literature, and the 

emerging research areas.  

Given the depth that these research formats permit, it is difficult to fully 

understand each work (Gershenson, Prasad and Zhang, 2003). Moreover, it is still not 

clear if and how various methods could be used jointly (Otto et al., 2016). In this sense, 

to best of our knowledge, there are some questions regarding MBPF design that remain: 

(i) which methods address modularity into the design of product families? (ii) what kind 

of design problems do these methods account for? (iii) for which kind of products have 

these methods been developed? (iv) how has the performance of these methods been 

assessed? (v) what are the main steps of these methods? (vi) what is the execution order 

of these steps? (vii) which techniques are used to execute each step of these methods? 

(viii) is there a common underlying structure among these methods? 

This paper aims at answering these questions through a systematic literature 

review in addition to a meta-synthesis of 72 articles (1999-2019) published in peer-

reviewed journals concerning MBPF design. The novelty of this research lies in the 

integrative connection among existing works on MBPF design. Besides that, its main 
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contributions consist of (i) constructing a functional model that connects the design 

methods for MBPFs; (ii) suggesting structured classes of design problems that 

complement the functional model by cataloging the techniques meant to execute each 

sub-function of the model; (iii) proposing a construction heuristic to build and assess 

functional models and classes of design problems. 

The remainder of this paper is structured as follows. Section 3.2 contains the 

research approach and relevant research methodological issues. Section 3.3 presents a 

functional model and the structured classes of design problems resulting from the 

literature mapping and analysis, followed by Section 3.4 that critically analyses the 

research findings. Finally, the last section draws some concluding remarks and main 

implications of this work as well as the next steps of this research. 

3.2 Systematic Literature Review 

Engineering is typically concerned with construction problems related to not yet 

existing entities (van Aken and Romme, 2009). This conception is in agreement with 

the goals of research performed under the design science paradigm, which seeks to 

produce knowledge to solve real problems or to design something that does not yet exist 

(Simon, 1962; van Aken, 2005). In a higher level of abstraction, that is the research 

scope of the MBPF design, which aims to formalize or to create artifacts that do not yet 

exist to solve real engineering problems concerning the product development. This 

work refers to an artifact as being a method or a technique intended to solve design 

problems. In general, a method can be understood as a group of systematic steps (sub-

functions) needed to accomplish specific design objectives while a technique consists of 

a set of related procedures required to execute each step of the method (March and 

Smith, 1995).  
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While design science is the epistemological basis, design science research is the 

method that operationalizes research in this context (Lacerda et al., 2013). For that 

reason, a six-step systematic literature review adapted to design science research by 

Morandi and Camargo (2015) were adopted: (i) question definition and conceptual 

framework, (ii) research strategy, (iii) search, eligibility and coding, (iv) quality 

assessment, (v) synthesis of results, and (vi) study presentation. 

First, the modularity into product family design was defined as the central topic 

of this research. Then, to clarify the research question and to limit its scope, a 

conceptual framework was developed based on the fundamental references about (i) 

modularity, (ii) product family design, and (iii) product development process. As a 

result, the following research questions and boolean search terms - (“Modularity” OR 

“Modular”) AND “Design” AND (“Product family” OR “Product platform”) - were 

formulated. 

• Which methods address modularity into the design of product families? 

• What kind of design problems do these methods account for? 

• For which kind of products have these methods been developed? 

• How has the performance of these methods been assessed? 

• What are the main steps of these methods? 

• What is the execution order of these steps? 

• Which techniques are used to execute each step of these methods? 

• Is there a common underlying structure among these methods? 

The search was conducted in two major databases: the Web of Science and 

Scopus. Those have been chosen because they provide quick access to the principal 

citation databases worldwide and have smart tools to track, analyze, and visualize 
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research (Morandi and Camargo, 2015). Additionally, they cover over 21.000 titles and 

more than 73 million records of research production in natural sciences, health sciences, 

engineering, computer science, and materials sciences, with coverage dating back to 

1900 (Content - How Scopus Works - Scopus - | Elsevier solutions, 2017; Clarivate 

Analytics, 2019). Besides that, to ensure the quality of the primary studies, only articles 

published in peer-reviewed international journals have been considered. Consequently, 

the English language was used as an inclusion criterion. Concerning the period and 

subject area, the articles published up to 2020 that encompassed the research in 

engineering, production, and operations management were consulted. Appendix A 

(Table A1) shows additional criteria in the search strategy protocol. 

With the research strategy defined and based on a search limited to the article 

title, abstract, and keywords, the primary studies were found. Then they were checked 

for duplicates, followed by an inspection of the titles and abstracts (Brunton, Stansfield 

and Thomas, 2012). After, the potentially relevant studies were analyzed in-depth, as 

recommended elsewhere (Adler and van Doren, 1972), and those in compliance with 

the research scope were selected for review as indicates Figure 11. Table 10 presents the 

excluding statistics, while Table 11 provides the list of 72 primary studies included in 

the review. 
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Figure 11. Flowchart of search results. 

Table 10. Excluding statistics. 

No. of exclusions Percentage Excluding criteria 

78 37.9% Duplicated studies 

35 17.0% Absence of methods or techniques addressing modularity in design 

18 8.7% Manufacturing and production for product families 

17 8.3% Design support systems 

13 6.3% Supply chain issues of product families 

11 5.3% Literature review on PBPF and modularity 

7 3.4% Fundamental issues on PBPF and modularity 

6 2.9% Theoretical development and synthesis on PBPF and modularity 

5 2.4% Very specific application not liable to generalization 

4 1.9% Paper not found 

3 1.5% Limited applicability to scale-based product family design 

2 1.0% Customer co-design 

2 1.0% Out of context 

2 1.0% Civil construction 

1 0.5% Aesthetics in product design 

1 0.5% Service design 

1 0.5% Software development 

206 100.0% Total 
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Table 11. List of primary studies included in the review. 

Id Title Authors and year 

R1 
A methodology of developing product family architecture for 

mass customization 
 (Jiao and Tseng, 1999a) 

R2 
A metric for evaluating design commonality in product 

families 
 (Kota, Sethuraman and Miller, 2000) 

R3 
Architecture of product family: Fundamentals and 

methodology 
 (Du, Jiao and Tseng, 2001) 

R4 Modular product architecture  (Dahmus, Gonzalez-Zugasti and Otto, 2001) 

R5 
Design for variety: developing standardized and modularized 

product platform architectures 
 (Martin and Ishii, 2002) 

R6 
Managing modularity of product architectures: Toward an 

integrated theory 
 (Mikkola and Gassmann, 2003) 

R7 

Modular product family design: Agent-based pareto-

optimization and quality loss function-based post-optimal 

analysis 

 (Rai and Allada, 2003) 

R8 An integrated method for designing modular products  (Asan, Polat and Serdar, 2004) 

R9 
Robust modular product family design using a modified 

Taguchi method 
 (Jiang and Allada, 2005) 

R10 
Managing modularity in product family design with functional 

modeling 
 (Zhang, Tor and Britton, 2006) 

R11 
A comprehensive metric for evaluating component 

commonality in a product family 
 (Thevenot and Simpson, 2007) 

R12 
A multi-criteria assessment tool for screening preliminary 

product platform concepts 
 (Otto and Hölttä-Otto, 2007) 

R13 
An index-based method to manage the tradeoff between 

diversity and commonality during product family design 
 (Thevenot et al., 2007) 

R14 
Improving an existing product family based on 

commonality/diversity, modularity, and cost 
 (Alizon, Shooter and Simpson, 2007) 

R15 On the module identification for product family development  (Meng, Jiang and Huang, 2007) 

R16 
A customer needs motivated conceptual design methodology 

for product portfolio planning 
 (Stone et al., 2008) 

R17 A product platform concept development method  (Park et al., 2008) 

R18 
A cooperative coevolutionary algorithm for design of 

platform-based mass customized products 
 (Li, Huang and Newman, 2008) 

R19 
Optimal product portfolio formulation by merging predictive 

data mining with multilevel optimization 
 (Tucker and Kim, 2008) 

R20 Optimal platform investment for product family design  (Zacharias and Yassine, 2008) 

R21 
Multiobjective evolutionary optimization for adaptive product 

family design 
 (Li and Huang, 2009) 

R22 

Integration of rough set and neural network ensemble to 

predict the configuration performance of a modular product 

family 

 (Zhu et al., 2010) 

R23 
Modularity analysis and commonality design: A framework for 

the top-down platform and product family design 
 (Liu, Wong and Lee, 2010) 

R24 
Developing modular product family using GeMoCURE within 

an SME 
 (Yan and Stewart, 2010) 

R25 
Flexible optimization decision for product design agility with 

embedded real options 
 (Dong, Shao and Xiong, 2011) 

R26 

Optimal component sharing in a product family by 

simultaneous consideration of minimum description length and 

impact metric 

 (Arciniegas and Kim, 2011) 

R27 
New dependency model and biological analogy for integrating 

product design for variety with market requirements 
 (ElMaraghy and AlGeddawy, 2012) 

R28 
Product platform flexibility planning by hybrid real options 

analysis 
(Jiao, 2012) 

R29 
Optimizing families of reconfigurable aircraft for multiple 

missions 
 (Pate, Patterson and German, 2012) 

R30 
Modular product development through platform-based design 

and DFMA 
 (Emmatty and Sarmah, 2012) 

R31 
From user requirements to commonality specifications: An 

integrated approach to product family design 
 (Simpson et al., 2012) 

R32 
An ISM, DEI, and ANP based approach for product family 

development 
 (Hsiao et al., 2013) 

(continued) 
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Table 11. (continued) 

Id Title Authors and year 

R33 
Reactive design methodology for product family 

platforms, modularity and parts integration 
 (AlGeddawy and ElMaraghy, 2013) 

R34 Modular design of product families for quality and cost  (Agard and Bassetto, 2013) 

R35 
An integrated method for flexible platform modular 

architecture design 
 (Li et al., 2013) 

R36 
Reduction of product platform complexity by vectorial 

Euclidean algorithm 
 (Navarrete et al., 2013) 

R37 
A structured approach to platform-driven product 

planning 
 (Sahin-Sariisik et al., 2014) 

R38 
A module generation algorithm for product architecture 

based on component interactions and strategic drivers 
 (Borjesson and Hoelttae-Otto, 2014) 

R39 

A methodology to define a reconfigurable system 

architecture for a compact heat exchanger assembly 

machine 

 (Mesa et al., 2014) 

R40 

A modular method of developing an eco-product family 

considering the reusability and recyclability of customer 

products 

 (Yang, Yu and Jiang, 2014) 

R41 
Joint optimization of product family configuration and 

scaling design by Stackelberg game 
 (Du, Jiao and Chen, 2014) 

R42 

Predicting configuration performance of modular product 

family using principal component analysis and support 

vector machine 

 (Meng et al., 2014) 

R43 A modular product multi-platform configuration model  (Hanafy and Elmaraghy, 2015) 

R44 
A network methodology for structure-oriented modular 

product platform planning 
 (Fan et al., 2015) 

R45 
Incorporating quality function deployment with 

modularity for the end-of-life of a product family 
 (Yu et al., 2015) 

R46 Modular deployment using TRM and function analysis  (Scalice et al., 2015) 

R47 Module family design for modular product  (Adhitama and Rosenstiel, 2015) 

R48 
A multi-principle module identification method for 

product platform design 
 (Wei et al., 2015) 

R49 

New modular product-platform-planning approach to 

design macroscale reconfigurable unmanned aerial 

vehicles 

 (Chowdhury et al., 2016) 

R50 
Analysis of architectural complexity for product family 

and platform 
 (Kim et al., 2016) 

R51 
A systematic adaptable platform architecture design 

methodology for early product development 
 (Li et al., 2016) 

R52 
A new methodology to cluster derivative product 

modules: an application 
 (Aydin and Ulutas, 2016) 

R53 
Hierarchical game joint optimization for product family-

driven modular design 
 (Ma et al., 2016) 

R54 
Brownfield Process: A method for modular product 

family development aiming for product configuration 
 (Pakkanen, Juuti and Lehtonen, 2016) 

R55 
An integrated approach to product family redesign using 

commonality and variety metrics 
 (Jung and Simpson, 2016) 

R56 

Design of adaptable product platform for heavy-duty 

gantry milling machines based on sensitivity design 

structure matrix 

 (Cheng et al., 2017) 

R57 

Modular platform optimization in conceptual vehicle body 

design via modified graph-based decomposition algorithm 

and cost-based priority method 

 (Hou et al., 2017) 

R58 
Development of sustainable platform for modular product 

family: a case study 
 (Shamsuzzoha and Helo, 2017) 

R59 

An integrated framework for product line design for 

modular products: product attribute and functionality-

driven perspective 

 (Goswami, Daultani and Tiwari, 2017) 

R60 
Development of product platforms: Theory and 

methodology 
 (Johannesson et al., 2017) 

R61 

Cost effects of modular product family structures: 

Methods and quantification of impacts to support decision 

making 

 (Ripperda and Krause, 2017) 

(continued) 
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Table 11. (continued) 

Id Title Authors and year 

R62 
Product-family shared-component selection based on the 

consistency constraint function 
 (Hou et al., 2018) 

R63 
Coordinated optimization of low-carbon product family and its 

manufacturing process design by a bilevel game-theoretic model 
 (Xiao et al., 2018) 

R64 
A method for coupling analysis of association modules in product 

family design 
 (Cheng, Xiao and Wang, 2018) 

R65 
An optimization model for low carbon oriented modular product 

platform planning (MP3) 
 (Wang et al., 2018) 

R66 
A fuzzy method for propagating functional architecture constraints 

to physical architecture 
 (Bonjour et al., 2009) 

R67 Methodology for reconfigurable fixture architecture design  (Bejlegaard et al., 2018) 

R68 
Modular product platforming with supply chain postponement 

decisions by leader-follower interactive optimization 
 (Xiong, Du and Jiao, 2018) 

R69 
Product family platform selection using a Pareto front of maximum 

commonality and strategic modularity 
 (Baylis, Zhang and McAdams, 2018) 

R70 
Value analysis for customizable modular product platforms: theory  

and case study 
(Colombo et al., 2019) 

R71 Deciding on the total number of  product architectures (Askhøj et al., 2019) 

R72 

Module-based machinery design: a method to support the design of 

modular machine families for reconfigurable manufacturing 

systems 

(Gauss, Lacerda and Sellitto, 2019) 

The next step was to perform a content analysis (Bardin, 1993; Mayring, 2014). 

With this regard, the primary studies included in the review configured the context units 

from which the registration units, i.e., text quotations, have been encoded (Bardin, 

1993). Coupled with that, a mixed coding scheme, compound by categorical and open 

codes were established as shown in Appendix A (Table A2) (Oliver and Sutcliffe, 

2012). While the categorical codes were defined a priori, the open codes emerged 

during the analytical reading of the primary studies (Dresch, Lacerda and Antunes Jr, 

2015). One example of categorical codes were the classes of design problems prevalent 

in the literature, which resulted from the conceptual framework formulation (Barnett-

Page and Thomas, 2009). The methods, techniques, and design problems, in turn, are 

examples of open codes that were only possible to identify during the analysis of the 

context units in depth. Figure 12(a) illustrates the mixed coding scheme. 

Besides the coding scheme, the following counting principles integrated the 

coding system adopted in this research: occurrence, co-occurrence, and frequency. The 

occurrence relates to the presence of code in a context unit (Bardin, 1993). For example, 

in Figure 12(a), the code 𝑇3 is assigned to quotations 𝑄2 and 𝑄3 of the primary study 
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𝑅2. Although it appears twice in the context unit, its occurrence is accounted only once 

as illustrates the binary integer 1 intersecting the row 𝑇3 and column 𝑅2 in Figure 12(b). 

Regarding the co-occurrence, it consists of the simultaneous presence of two or more 

codes in a context unit (Bardin, 1993). Using the same example of code 𝑇3 in Figure 

12(a) it is possible the visualize that 𝑇3 simultaneously appears with codes, 𝑀2, 𝑃𝑏2, 

𝑃𝑏4, 𝐶𝑝1 and 𝐶𝑝2, in the primary study 𝑅2. It is also possible to deduct it from Figure 

12(b), assuming that each primary study relates to a unique method. 

 

Figure 12. (a) Example of the mixed coding scheme; (b) Example of counting matrix. 
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The frequency, in turn, can be determined as the number of times each code 

occurs in a context unit (Mayring, 2014). However, in the present research, this measure 

only makes sense when generalized for the corpus of analysis, which consists of a set of 

primary studies included in the SLR, i.e., 𝐶𝐴 = {𝑅𝑖}. For example, in Figure 12(a), the 

method 𝑀2 is assigned to three quotations (𝑄1, 𝑄2 and 𝑄3), thus its frequency within the 

primary study 𝑅2 would be 𝑓𝑀2 = 3, irrelevant information if each primary study relates 

to only one method. Similarly, a problem 𝑃𝑏𝑖 can be assigned to four quotations (𝑄𝑖, 

𝑄𝑖+1, 𝑄𝑖+2 and 𝑄𝑖+3) within a given primary study 𝑅𝑖 to present four complementary 

techniques (𝑇𝑖, 𝑇𝑖+1, 𝑇𝑖+2 and  𝑇𝑖+3) used together to solve it. It does not mean that 

𝑃𝑏𝑖 is more important than 𝑃𝑏𝑖+1 that appears only once in the context unit, neither that 

𝑀𝑖 tackles four times the same problem 𝑃𝑏𝑖. But if we expand this counting principle to 

the corpus of analysis, useful information might emerge. Let’s suppose the six primary 

studies present in Figure 12(b) compound a corpus of analysis; then it is possible to 

infer the class of design problems 𝐶𝑝1 is tackled by 66,7% of the existing methods. 

Moreover, it is reasonable to attest that the most robust method is 𝑀2, because it 

accomplishes two classes of problems (𝐶𝑝1 and 𝐶𝑝2) and three problems (𝑃𝑏1, 𝑃𝑏2 and 

𝑃𝑏4). In this sense, we restated the definition of frequency as being the number of times 

each code occurs in a corpus of analysis. 

After defining the coding system, the next task was to encode and understand 

the raw data. This process was assisted by the qualitative data analysis software Atlas Ti 

(ATLAS.ti 8 Windows | ATLAS.ti, 2019), and one important issue here was to link the 

design problem to its potential class of design problems defined a priori. Besides that, it 

was also needed to identify the sequence the design problems occur along the course of 

the methods analyzed. This procedure of establishing the causal relationship between 

problems was performed through a syntopic reading (Adler and van Doren, 1972), and 
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based on the reasoning of effect-cause-effect retrieved from Theory of Constraints 

thinking process (Cox and Schleier, 2010). Figure 13 gives an example of a code 

hierarchy resulted from this process, wherein seven design problems, organized in 

sequence, compound the second class of design problems for product families. 

 

Figure 13. Example of codes hierarchy in software Atlas Ti. 

The goal of meta-synthesis is to produce a new and integrative interpretation of 

findings that is more substantive than those resulting from individual investigations 

(Jensen and Allen, 1996; Finfgeld, 2003). In this sense, the final product is usually 

expressed in graphical form to permit mapping the nature and variety of concepts 

studied, identifying associations between different subjects, and providing explanations 

for the results from the various primary studies (Dresch, Lacerda and Antunes Jr, 2015).  

With that intention, the next issue was to formulate a functional model that 

connects the functionalities of all methods identified in the corpus of analysis. The 

Functional Basis, a design language that describes the overall function as a set of 

simpler subfunctions while showing their connectivity (Stone and Wood, 2000), was 

used to aid in this task. In this context, the first thing done was to convert a design 

problem (𝑃𝑏𝑖) into a sub-function (𝑆𝑖) that corresponds to an action intended to solve 

it. For example, in Figure 13, the design problem 𝑃𝑏2.1 consists of the identification of 
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customer needs, thus an action to solve it would be identify the costumer needs. This 

transformation was performed by simply converting a substantive into a verb in an 

imperative form. After, the sub-functions were connected by the information flows on 

which they operate. The execution order of each sub-function followed the sequence 

resulting from the enconding task ilustrated in Figure 13. Later, the clustering of design 

problems into classes was checked by the Dominant flow, Branching flow, and 

Conversion-transmission flow huristics (Stone, Wood and Crawford, 2000). Then, the 

clustering solution was depicted in a design structure matrix (Browning, 2001) and had 

its quality assessed by the Modularity Index (𝑀𝐼) (Jung and Simpson, 2017). Details on 

the heuristics, design structure matrix, and 𝑀𝐼 are given in its references. According to 

this checking, those problems not belonging to a previously assigned class were 

relocated, and the coding system, along with the encoding process of raw data, was 

updated. Figure 14 gives an example of a generic functional model, wherein each sub-

function (𝑆𝑖) corresponds to an action intended to solve a particular design problem 

(𝑃𝑏𝑖). The dashed lines around the sub-functions represent the classes of design 

problems (𝐶𝑝𝑖), defined here as a set of design problems which share common 

characteristics, either practical or theoretical, and contain useful artifacts for their 

solution, i.e. 𝐶𝑝𝑖 = {𝑃𝑏𝑖, 𝑇𝑖 , 𝑀𝑖} (Dresch, Lacerda and Antunes Jr, 2015).  

 

Figure 14. Example of a generic functional model. 
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After checking the clustering solution, the structured classes of design problems 

(𝐶𝑝𝑖) were established based on the co-occurrence among the design problems (𝑃𝑏𝑖), 

techniques (𝑇𝑖), methods (𝑀𝑖), evaluation approaches (𝐸𝑡𝑖), products classification 

(𝑃𝑡𝑖), and primary studies (𝑅𝑖) as exemplified in Table 12. Besides that, to support the 

subsequent association analysis, part of the content of Table 12 was converted into a 

binary incidence matrix as illustrated by Table 13. 

Table 12. Example of structured classes of problems. 

Classes of 

problems 
Problems 

Artifacts Evaluation 

approach 

Products 

classification 

Primary 

studies Techniques Methods 

Cp1 

Pb1 
T1 

M1 ET1 

PT1 

R1 

M2 ET2 R2 

T2 M3 ET1 R3 

Pb2 T3 
M2 ET2 R2 

M4 ET3 PT2 R4 

Cp2 
Pb3 T2 M3 ET1 

PT1 
R3 

Pb4 T3 M2 ET2 R2 

Cp3 
Pb5 T4 M5 

ET4 
PT3 R5 

Pb6 T5 M6 PT4 R6 

Table 13. Example of incidence matrix. 

  Problems Classes of problems 

  Pb1 Pb2 Pb3 Pb4 Pb5 Pb6 Cp1 Cp2 Cp3 

P
ri

m
ar

y
 s

tu
d

ie
s R1 1      1   

R2 1 1  1   1 1  

R3 1  1    1 1  

R4  1     1   

R5     1    1 

R6      1   1 

Frequency 3 2 1 1 1 1 4 2 2 

Rel. Freq. 50% 33.3% 16.7% 16.7% 16.7% 16.7% 66.7% 33.3% 33.3% 

The association analysis is useful for discovering relationships hidden in large 

data sets (Zhang and Zhang, 2002). The uncovered relationships can be represented in 

the form of association rules or sets of frequent items, i.e.{𝐶𝑝1} → {𝐶𝑝2}. This rule was 

extracted from the data set shown in Table 13 and suggested that a relationship exists 

between 𝐶𝑝1 and 𝐶𝑝2. In the context of this work, let 𝐶 = {𝑐1, 𝑐2, … 𝑐𝑖} be the set of all 

codes retrieved from the content analysis and 𝑅 = {𝑟1, 𝑟2, … 𝑟𝑖} be the set of all 

relationships between primary studies and codes. Each relationship 𝑟𝑖 contains a subset 
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of codes assigned from 𝐶. In association analysis, a collection of zero or more items is 

termed an itemset. If an itemset contains 𝑘 items, it is called a k-itemset. For instance, 

{𝐶𝑝1, 𝐶𝑝2} is an example of a 2-itemset. The null (or empty) set is an itemset that does 

not contain any items. The relationship width is defined here as the number of items 

present in a relationship. A relationship 𝑟𝑖 is said to contain an itemset 𝑋 if 𝑋 is a subset 

of 𝑟𝑖. For example, another relationship shown in Table 13 contains the itemset {𝐶𝑝1} 

but not {𝐶𝑝1, 𝐶𝑝3}. An essential property of an itemset is its support count, which refers 

to the number of relationships that contain a particular itemset (Tan et al., 2019). 

Mathematically, the support count, 𝜎(𝑋), for an itemset 𝑋 can be stated as follows: 

𝜎(𝑋) = |{𝑟𝑖|𝑋 ⊆ 𝑟𝑖, 𝑟𝑖 ∈ 𝑅}| 2 

where the symbol |. | note the number of elements in a set. In the data set shown in 

Table 13, the support count for {𝐶𝑝1, 𝐶𝑝2} is equal to two because there are only two 

relationships that contain 𝐶𝑝1 and 𝐶𝑝2 concurrently. An association rule is an 

implication expression of the form 𝑋 → 𝑌, where 𝑋 and 𝑌 are disjoint itemsets, i.e., 𝑋 ∩

𝑌 = ∅. The strength of an association rule can be measured in terms of its support,  

confidence, and lift (Zhang and Zhang, 2002; Gkoulalas-Divanis and Verykios, 2010; 

Tan et al., 2019). Support determines how often a rule applies to a given data set, while 

confidence determines how frequently items in 𝑌 appear in relationships that contain 𝑋. 

Lift, in turn, computes the ratio between the rule's confidence and the support of the 

itemset in the rule consequent. The formal definitions of these metrics are: 

Support, 𝑠(𝑋 → 𝑌) =
𝜎(𝑋∪𝑌)

𝑁
 3 

Confidence, 𝑐(𝑋 → 𝑌) =
𝜎(𝑋∪𝑌)

𝜎(𝑋)
 4 
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Lift, 𝑙(𝑋 → 𝑌) =
𝑐(𝑋→𝑌)

𝑠(𝑌)
 5 

A lattice structure can be used to enumerate the list of all possible itemsets. In 

general, a data set that contains 𝑘 items can potentially generate up to 2𝑘 − 1 frequent 

itemset, excluding the null set (Tan et al., 2019). Because 𝑘 can be very large in many 

practical applications, the search space of itemsets that need to be explored is 

exponentially large. To reduce the search space during frequent itemset generation, this 

research adopted the Apriori, which consists of an association rule mining algorithm 

that uses support-based pruning to systematically control the exponential growth of 

candidate itemsets (Zhang and Zhang, 2002). Its execution on this work was performed 

in software R (Team, 2019). Details on the frequent itemset generation through the 

Apriori algorithm is provided in (Tan et al., 2019). 

In summary, this section provided methodological procedures for searching, 

selecting, and analyzing the content of primary studies. Besides that, with the purpose 

of synthesizing the findings, a construction heuristic was proposed to build and assess 

functional models and classes of design problems. Additionally, a technique to identify 

the association rules among the classes of design problems was presented. The results of 

this process are presented in the next section. 

3.3 Meta-Synthesis 

The presentation of meta-synthesis is divided into two parts. The first part 

introduces the functional model that connects the design methods for MBPFs identified 

in this research. In this sense, the model not only presents the sub-functions intended to 

solve the design problems but also indicates the causal relationship among them along 

with its respective input and output flows. The second part, in turn, shows the structured 

classes of design problems that complement the functional model by cataloging the 
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techniques meant to execute each sub-function of the model. Moreover, it presents the 

definitions of methods and techniques, how they have been tested, for what product they 

have been developed, and the most common association rules concerning the classes 

and its design problems. 

3.3.1 Functional Model of MBPF Design 

From the corpus of analysis, 72 methods were identified. Although these 

methods do not tackle the same design problems, at a higher level of abstraction, they 

somehow share the same objective of designing product families through the use of 

modularity. In this sense, following the reasoning of Stone and Wood (2000), we 

derived the overall function of this set of methods as being the: “Design module-based 

product families.” The overall function expresses the solution-neutral relationship 

between inputs and outputs (Pahl et al., 2007). With this respect, seven inputs and one 

output flows were identified in this review, as shown in Figure 15(a). For each input 

flow, a chain of sub-functions was established based on 25 design problems that 

emerged during the content analysis, as shown in Table A2. Then, the function chains 

were aggregated in a functional model, and the sub-functions were grouped into classes 

of problems as presented in Figure 15(b). In this model, the continuous and dashed 

arrows respectively indicate the information and feedback flows among the sub-

functions, while the dashed rectangles represent the classes of design problems. 

The functional model was compound by 25 sub-functions subdivided into 4 

classes of design problems. The first class of design problems identified was the product 

family planning and positioning, which deals with market objectives along with 

technology developments guided by corporate strategies (Ulrich and Eppinger, 2012). 

Within this class, the model starts by strategically planning the MBPF in the sub- 
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Figure 15. (a) A black box model for designing MBPFs; (b) Functional model for designing MBPFs. 
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function 𝑆1.1, wherein strategic axes are incorporated into product family design (Jiao 

and Tseng, 1999a). Some issues covered by this sub-function include the mapping of 

future product plans (Martin and Ishii, 2002; Jiang and Allada, 2005), the optimal initial 

investment in the platform (Zacharias and Yassine, 2008), the relationship between 

business environment and product architecture (Otto and Hölttä-Otto, 2007; Pakkanen, 

Juuti and Lehtonen, 2016), the drivers influencing the product modularity and its 

relative importance (Sahin-Sariisik et al., 2014; Scalice et al., 2015), and the 

appropriateness of product modularity (Asan, Polat and Serdar, 2004; Shamsuzzoha and 

Helo, 2017). Those market-related objectives serve as an input flow for segmenting the 

market in the sub-function 𝑆1.2. In this step, the market is decomposed into several 

segments taking into account the industry type, customer consumption levels, regional 

characteristics, among other factors (Fan et al., 2015). At this stage, clustering 

procedures (Tucker and Kim, 2008; Hsiao et al., 2013; Colombo et al., 2019) are 

usually employed for characterizing different customer groups (Jiao and Tseng, 1999a), 

that along with reverse engineering and benchmarking of existing solutions support the 

identification of promising product plans and platform leveraging strategies (Thevenot 

and Simpson, 2007; Simpson et al., 2012). The outputs here are not only target market 

segments (ElMaraghy and AlGeddawy, 2012; Sahin-Sariisik et al., 2014) but also the 

planning refinement feedback, as shown in Figure 15(b) (Adhitama and Rosenstiel, 

2015; Li et al., 2016). 

The second class of design problems found was the market-driven product 

family design, which handles the transition of customer needs (𝐶𝑁) to functional 

requirements (𝐹𝑅) (Simpson et al., 2014). The first step here, in sub-function 𝑆2.1, is to 

identify 𝐶𝑁𝑠 by deriving meaning through interpretations of customers’ perceptions 

about the existing products (Cheng et al., 2017). This process is usually assisted by 
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qualitative and quantitative techniques on data collection (Stone et al., 2008; Emmatty 

and Sarmah, 2012; Colombo et al., 2019), analysis (Tucker and Kim, 2008; Hsiao et al., 

2013), and synthesis (Pakkanen, Juuti and Lehtonen, 2016). Coupled with that, arises 

the necessity to determine the relative importance (𝑤) of each need (Asan, Polat and 

Serdar, 2004). For that reason, the sub-function 𝑆2.2 explores the priority level of each 

desired attribute in a product (Jiao and Tseng, 1999a; Stone et al., 2008) and determines 

which is the most influent on customer decision making (Du, Jiao and Chen, 2014; Wei 

et al., 2015). This market-related information must be then translated into engineering 

specifications; in other words, it should be converted into 𝐹𝑅𝑠 (Jung and Simpson, 

2016; Johannesson et al., 2017). This task of formulating the 𝐹𝑅𝑠 from the 𝐶𝑁𝑠 is 

performed by sub-function 𝑆2.3 (Cheng et al., 2017), that uses two strategies to that end 

(Meng, Jiang and Huang, 2007). The first is the inductive functional modelling that 

describes a product in terms of elementary functions required to achieve its overall 

function or purpose (Zhang, Tor and Britton, 2006; Stone et al., 2008; Gauss, Lacerda 

and Sellitto, 2019). The second is deductively elicit the 𝐹𝑅𝑠 and then map them with 

𝐶𝑁𝑠 through incidence matrices (Yu et al., 2015; Pakkanen, Juuti and Lehtonen, 2016). 

In both cases, the 𝐹𝑅𝑠 might derive not only from 𝐶𝑁𝑠 but also from existing product 

offerings (Jiao and Tseng, 1999a). While 𝐹𝑅𝑠 are generic to all members within the 

same customer group, many functional requirement instances (𝐹𝑅∗) could result from 

different desired values for a particular 𝐹𝑅, i.e. 𝐹𝑅𝑖 = {𝐹𝑅𝑖
∗} (Jiao and Tseng, 1999a; 

Martin and Ishii, 2002). In this sense, the sub-function 𝑆2.6 arranges similar 𝐹𝑅𝑠∗ into 

clusters (𝐹𝑅𝑇) that are characterized by a target value (𝑇𝑉) and a variation range (𝑉𝑅), 

i.e. 𝐹𝑅𝑇𝑖 = [𝑇𝑉𝑖 ,  𝑉𝑅𝑖] (Park et al., 2008; Zacharias and Yassine, 2008; Mesa et al., 

2014; Bejlegaard et al., 2018; Gauss, Lacerda and Sellitto, 2019). Among a finite set of 

𝐹𝑅𝑠, there are some prone to change in the future market (Jiang and Allada, 2005). 
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These transient 𝐹𝑅𝑠 (𝐹𝑅𝑡) are identified and have its changing probability estimated in 

the sub-function 𝑆2.4 (Bejlegaard et al., 2018; Wang et al., 2018). Another critical factor 

that affects the level of granularity of product architecture is 𝐹𝑅 hierarchy (Dahmus, 

Gonzalez-Zugasti and Otto, 2001; Simpson et al., 2014). This issue is tackled by the 

sub-function 𝑆2.5 through the mapping of dependencies among the 𝐹𝑅𝑠 (Alizon, 

Shooter and Simpson, 2007; Bonjour et al., 2009; Yan and Stewart, 2010). Finally, 

through the sub-function 𝑆2.7, the functional view of a product family is performed from 

an abstract level to individual instances (Jiao and Tseng, 1999a; Kota, Sethuraman and 

Miller, 2000; Yang, Yu and Jiang, 2014; Gauss, Lacerda and Sellitto, 2019). 

The third class of design problems identified was the product family modeling, 

which comprehends the definition of modules, platforms, and the product family 

configuration structure in terms of design parameters (𝐷𝑃) and 𝐹𝑅𝑠 (Jiao, Simpson and 

Siddique, 2007; Simpson et al., 2014). In this class, the model starts by defining and 

modeling the product family and platforming criteria in sub-function 𝑆3.1. From the 

design objectives coming from the sub-function 𝑆1.1, decisions on what decomposition 

strategy to follow (Stone et al., 2008; Liu, Wong and Lee, 2010; Emmatty and Sarmah, 

2012; Yang, Yu and Jiang, 2014), what criteria to use for clustering the modules 

(Arciniegas and Kim, 2011; Hsiao et al., 2013; Yu et al., 2015; Ma et al., 2016; Hou et 

al., 2017; Cheng, Xiao and Wang, 2018), and what approach to adopt for identifying the 

platform are made at this stage  (Fan et al., 2015; Hou et al., 2017, 2018). In terms of 

decomposition, there are two prevalent strategies, functional and physical 

decomposition. The first derives from the mapping relationships between two domains, 

i.e., 𝐹𝑅 → 𝐷𝑃 (Suh, 2001), while the second comes from the mapping relationships 

within the same domain, i.e., 𝐷𝑃 → 𝐷𝑃 (Bonjour et al., 2009). These strategies are not 

mutually exclusive; on the contrary; they are complementary in some cases (Asan, Polat 
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and Serdar, 2004; Borjesson and Hoelttae-Otto, 2014; Wei et al., 2015). Independently 

of what strategy is used, there are common criteria employed for clustering the modules 

or even to identify the platforms. These criteria, along with its frequencies, are 

presented in Table 14. 

Table 14. Modular platforming criteria of sub-function S3.2. 

Criteria Frequency Rel. Freq. Primary study (Id.) 

Interaction or coupling 9 25.0% R5, R17, R26, R31, R32, R44, R53, R64, R72. 

Redesign effort 6 16.7% R5, R15, R26, R30, R31, R55. 

Variety 6 16.7% R16, R17, R23, R31, R45, R56. 

Cost 5 13.9% R15, R23, R53, R57, R61. 

Commonality 5 13.9% R7, R30, R32, R44, R55. 

Environmental 2 5.6% R40, R65. 

Quality 2 5.6% R57, R62. 

Utility 1 2.8% R30. 

Total 36 100.0%  

Regarding the approaches adopted for identifying platforms, there are also two 

strategies (Stone et al., 2008). One that considers the variability of 𝐹𝑅𝑠∗ (Park et al., 

2008; Yu et al., 2015), and the other that takes into account the level of redesign effort 

taken across generations (Simpson et al., 2012; Jung and Simpson, 2016). In both, those 

modules related to the low variability of 𝐹𝑅𝑠∗ or low redesign effort across generations 

are defined as common (platforms), while those related to the high variability of 𝐹𝑅𝑠∗ 

or high redesign effort across generations are set as differentiate ones (Liu, Wong and 

Lee, 2010). Given the 𝐹𝑅𝑠 previously defined, the process continues by formulating the 

𝐷𝑃𝑠 in sub-function 𝑆3.2 (Jiao and Tseng, 1999a). The 𝐷𝑃 consists of the physical 

effect with the ability to fulfill one or more 𝐹𝑅𝑠 (Gauss, Lacerda and Sellitto, 2019), 

and its formulation is usually based on the available technologies and the existing 

products (Pakkanen, Juuti and Lehtonen, 2016; Cheng et al., 2017; Johannesson et al., 

2017). The 𝐷𝑃𝑠 along with the 𝐹𝑅𝑠 configure the two constituents of the product 

family architecture (𝑃𝐹𝐴) (Jiao and Tseng, 1999a; Arciniegas and Kim, 2011; Askhøj 

et al., 2019), that in context of MBPF design, can be defined as decoupled interfaces 

and the “one-to-one” mapping between 𝐹𝑅𝑠 and 𝐷𝑃𝑠 (Navarrete et al., 2013; Borjesson 
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and Hoelttae-Otto, 2014). This mapping process is performed in the sub-function 𝑆3.3, 

and is usually depicted by a design matrix, i.e. [𝐹𝑅]𝑚 = [𝑃𝐹𝐴]𝑚×𝑛[𝐷𝑃]𝑛, where the 

nonblank entry 𝑎𝑖𝑗 ∈ [𝑃𝐹𝐴]𝑚×𝑛 indicates a relationship between 𝐹𝑅𝑖 and 𝐷𝑃𝑖 (Wei et 

al., 2015; Wang et al., 2018). Then, in the sub-function 𝑆3.4, the 𝑃𝐹𝐴 is decomposed 

into different functional modules (𝐹𝑀), i.e. 𝐹𝑀𝑖 = {𝐹𝑅𝑖, 𝐷𝑃𝑖} (Jiao and Tseng, 1999a). 

In 80.0% of methods that tackle this sub-function, the functional decomposition is 

assisted by heuristics (Stone et al., 2008; Liu, Wong and Lee, 2010; Li et al., 2016; 

Gauss, Lacerda and Sellitto, 2019), while the 20.0% reaming adopt meta-heuristics 

related to optimization problems (Borjesson and Hoelttae-Otto, 2014; Yang, Yu and 

Jiang, 2014; Wei et al., 2015). The 𝐹𝑀𝑠 must physically match the working structure 

(Pahl et al., 2007). In this sense, the rough geometric layout is elaborated in sub-

function 𝑆3.5 to identify the interactions among physical components  (Pakkanen, Juuti 

and Lehtonen, 2016; Gauss, Lacerda and Sellitto, 2019). Without this, it would be 

difficult to determine how subsystems, subassemblies, or parts are coupled (Martin and 

Ishii, 2002). In such cases where the functional decomposition is by-passed, the 𝐷𝑃𝑠 

serve as an input flow; otherwise, the 𝐹𝑀𝑠 must be considered (Li et al., 2016). The 

sub-function 𝑆3.6 models these structural dependencies among components (Yu et al., 

2015; Kim et al., 2016; Baylis, Zhang and McAdams, 2018), and similarly to the sub-

function 𝑆3.3, this process is usually depicted by a design structure matrix (𝐷𝑆𝑀), i.e. 

[𝐷𝑃]𝑚 = [𝐷𝑆𝑀]𝑚×𝑛[𝐷𝑃]𝑛. However, the nonblank entry 𝑎𝑖𝑗 ∈ [𝐷𝑆𝑀]𝑚×𝑛 indicated 

here, represent a relationship between 𝐷𝑃𝑖 and 𝐷𝑃𝑖 (Arciniegas and Kim, 2011; Dong, 

Shao and Xiong, 2011; AlGeddawy and ElMaraghy, 2013). Later, in the sub-function 

𝑆3.7, the 𝐷𝑆𝑀 is decomposed into physical modules (𝑃𝑀), i.e. 𝐷𝑀𝑖 = {𝐷𝑃𝑖 , 𝐷𝑃𝑖} 

(Bonjour et al., 2009). The aim here is to achieve a structure where units are highly 

interconnected in themselves, but largely independent of other units (Asan, Polat and 
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Serdar, 2004). In 47.8% of methods that encompass this sub-function, the physical 

decomposition is performed by meta-heuristics related to optimization problems (Meng, 

Jiang and Huang, 2007; Agard and Bassetto, 2013; Aydin and Ulutas, 2016), 39.2% 

adopt heuristics (Agard and Bassetto, 2013; Yu et al., 2015; Baylis, Zhang and 

McAdams, 2018), and 13.0% do not explicit the approach used  (Hsiao et al., 2013; 

Johannesson et al., 2017; Cheng, Xiao and Wang, 2018). Among those methods assisted 

by meta-heuristics in functional and physical decomposition, 71.4% make use of 

evolutionary techniques (Wei et al., 2015; Hou et al., 2017; Wang et al., 2018). It was 

also noted, in 8.8% of methods that encompass the sub-functions 𝑆3.4 and 𝑆3.7, the 

functional and physical decomposition being performed concurrently (Asan, Polat and 

Serdar, 2004; Borjesson and Hoelttae-Otto, 2014; Wei et al., 2015). Among the 𝐹𝑀𝑠 

and 𝑃𝑀𝑠 generated through the decomposition heuristics, only 20.0% are evaluated in 

the sub-function 𝑆3.8, while those derived from the meta-heuristics account for less than 

14.3%. Independently of what strategy was used to generate the modules, there are 

common criteria for evaluating them at this stage, as shown in Table 15. The expected 

output of this step is the clustering refinement feedback to sub-functions 𝑆3.4 and 𝑆3.7. 

Table 15. Modules’ evaluation criteria of sub-function S3.8. 

Criteria Frequency Rel. Freq. Primary study (Id.) 

Modularity 4 20.0% R12, R35, R37, R72. 

Utility 3 15.0% R1, R12, R72. 

Cost 3 15.0% R1, R12, R72. 

Interaction or coupling 2 10.0% R12, R24. 

Lead time 2 10.0% R12, R30. 

Commonality 1 5.0% R12. 

Redesign effort 1 5.0% R12. 

Quality 1 5.0% R12. 

Serviceability 1 5.0% R12. 

Environmental 1 5.0% R12. 

Strategic 1 5.0% R12. 

Total 20 100.0%  

Based on the platform identification approach/criteria coming from the sub-

function 𝑆3.1, the classification of 𝐹𝑀𝑠 or 𝑃𝑀𝑠 is then established at sub-function 𝑆3.9. 

The generic modules in MBPF are usually classified into platforms and differentiating 
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modules (Hou et al., 2017). The platforms are the ones with less external and internal 

variety and are suitable for sharing in series instances (Li et al., 2016), while 

differentiate modules are those with more significant external and internal varieties and 

are apt to be instantiated in family variants (Fan et al., 2015). The platforms and 

differentiating modules can assume two different topologies (Du, Jiao and Tseng, 

2001). The first is the compound module, which is composed of several sub-modules 

(Li, Huang and Newman, 2008). The second, is the primitive module, the one that 

cannot be further decomposed (Li and Huang, 2009). A primitive module, in turn, can 

be of three types: (i) instance, (ii) scalable, and (iii) empty (Li, Huang and Newman, 

2008). An instance module means that all the parameters of the modules have been 

given. A scalable module means that some of its parameters can be stretched or shrunk, 

either continuously within a range or discretely in a finite domain. An empty module 

denotes that the function is optional for the end product, not applying to the platforms. 

With various modules classified, a configuration structure needs to be established for 

end product configuration (Rai and Allada, 2003). This process is performed in sub-

function 𝑆3.10 to describe how various product variants are derived from the 

combination of modules and the interconnections across different levels of assembly 

(Jiao and Tseng, 1999a). To describe these hierarchical relationships in an MBPF, the 

concept of Generic Bill-of-Material (GBOM) is usually adopted as a generic data 

structure (Du, Jiao and Tseng, 2001). A GBOM is defined as an AND/OR tree structure 

composed  (Yan and Stewart, 2010). An AND module is introduced in the GBOM to 

represent a compound module, wherein all of its sub-modules must be selected and 

included in a generated product variant. AND modules altogether reflect the 

commonality of the product family. An OR module is usually an abstract or virtual 

concept, which means that only one of its sub-modules can be selected and included in 
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the variant. OR modules embody the modularity of a product family. Scalable and 

instance modules are primitive modules and therefore appear as leaf nodes in the 

GBOM tree. An empty module is also defined in the GBOM to denote that the function 

of OR module is optional for the end product. It can only be the sub-module of an OR 

module as a leaf node in the GBOM tree (Li, Huang and Newman, 2008; Li and Huang, 

2009). The output of this stage is the MBPF configuration structure; wherein all 

modules are supposed to add value to the product. Otherwise, they should not be 

included in the family (Baldwin and Clark, 2000). In this sense, the sub-function 𝑆3.11 

evaluates the product family as a whole and generates measures of deviation from the 

ideal, which will serve as feedback improvements (Otto and Hölttä-Otto, 2007). The 

criteria used for assessing the product families at this stage are presented in Table 16. 

Table 16. Product family evaluation criteria of sub-function S3.11. 

Criteria Frequency Rel. Freq. Primary study (Id.) 

Modularity 3 20.0% R6, R8, R12. 

Commonality 3 20.0% R2, R11, R13. 

Utility 2 13.3% R12, R14. 

Variety 2 13.3% R13, R14. 

Interaction or coupling 2 13.3% R8, R50. 

Cost 2 13.3% R12, R72. 

Profit 1 6.7% R54. 

Total 15 100.0%  

The last class of design problems found was the product family configuration, 

which deals with structural configuration problem wherein the modules formulating the 

variants are optimally selected from the given MBPF structure (Simpson et al., 2014). 

In this class, the model starts by defining and modeling the configuration criteria in sub-

function 𝑆4.1, wherein decisions on what criteria to use for modelling the combinatorial 

and parametric problem are made (Li, Huang and Newman, 2008; Li and Huang, 2009; 

Colombo et al., 2019). The most common criteria used in this sub-function are 

presented in Table 17 
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Table 17. Configuration criteria of sub-function S4.1. 

Criteria Frequency Rel. Freq. Primary study (Id.) 

Cost 9 23.1% R9, R19, R28, R41, R49, R61, R63, R68, R70. 

Demand 7 17.9% R9, R25, R28, R41, R59, R63, R68. 

Profit 5 12.8% R9, R19, R25, R28, R68. 

Price 5 12.8% R9, R19, R25, R28, R68. 

Utility 5 12.8% R28, R41, R63, R68, R70. 

Commonality 3 7.7% R21, R23, R69. 

Quality 2 5.1% R7, R9. 

Modularity 1 2.6% R69. 

Interaction or coupling 1 2.6% R49. 

Environmental 1 2.6% R63. 

Total 39 100.0%  

There are some cases where the configuration space is quite huge (Zhu et al., 

2010). Therefore, it is economically unviable for most companies to test and measure all 

the derivatives one by one (Meng et al., 2014). So generally a limited amount of 

variants are chosen for performance experiments, and the measurement results are saved 

into the database as the representative performances for a family of products (Zhu et al., 

2010; Meng et al., 2014). In this sense, the sub-function 𝑆4.2 not only reduces the 

configuration space but also analyses the historical modularized product configurations 

to set up prediction models through data mining and regression analysis (Zhu et al., 

2010). In such cases where the reduction of configuration space is not required, the 

original MBPF configuration should be used as an input flow for combining the 

modules into product family variants. This task is performed by the sub-functions 𝑆4.3 

and 𝑆4.4. At sub-function 𝑆4.3 the right combination of modules to formulate the variants 

is found (Xiong, Du and Jiao, 2018). Then, if there are scalable modules within these 

variants, the parameters of the modules are determined in sub-function 𝑆4.4 (Xiao et al., 

2018; Colombo et al., 2019). This process of combining and scaling modules is assisted 

by meta-heuristics in 81.0% of the methods analyzed (Adhitama and Rosenstiel, 2015; 

Chowdhury et al., 2016). Coupled with that, 58.8% of it makes use of evolutionary 

techniques (Xiao et al., 2018; Xiong, Du and Jiao, 2018). Then, the structure of the 

product family variants derived from the combination process is represented in the sub-
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function 𝑆4.5 closing the functional model (Du, Jiao and Tseng, 2001; Li, Huang and 

Newman, 2008; Li and Huang, 2009). 

3.3.2 Structured Classes of Problems 

With the functional model defined, the next issue was to check the quality of the 

classes of design problems defined during the encoding process. First, the heuristics 

proposed by Stone, Wood, and Crawford (2000) were employed to compare if the 

clustering solution resulting from this process differs from the original proposition. As a 

result, the four classes of design problems (𝐶𝑝1, 𝐶𝑝2, 𝐶𝑝3, 𝐶𝑝4) were identified through 

the conversion-transmission heuristic, and the only difference found in relation to the 

original proposition was that the sub-function 𝑆1.2 (segment the market) should integrate 

the second class (𝐶𝑝2) instead of the first (𝐶𝑝1). Then, the interactions among the 

classes of design problems were depicted in a design structure matrix to calculate the 

𝑀𝐼 as shown in Figure 16. The 𝑀𝐼 assesses the quality of a clustering solution, ranging 

from 0 to 1, by capturing the degrees of connection strengths within each independent 

class and between different classes (𝑀𝐼1), the density of connections within each class 

and between classes (𝑀𝐼2), and the proximity of interactions to the diagonal of the 

design matrix (𝑀𝐼3) (Jung and Simpson, 2017). With 𝑀𝐼1, 𝑀𝐼2, and 𝑀𝐼3 considered 

equally important, i.e. (𝑤1, 𝑤2, 𝑤3) = (
1

3
,
1

3
,
1

3
), the MI was calculated, and the quality 

of the clustering solution was found to be equals to 0.64. Although the conversion-

transmission heuristic indicated the 𝑆1.2 as being part of 𝐶𝑝2, as suggests the grey area 

in Figure 16, it was purposely reattached to the 𝐶𝑝1 (original proposition) in order to 

achieve better 𝑀𝐼 results. Subsequently, the 𝑀𝐼 was recalculated, and the quality of the 

clustering solution improved to 0.72. The rectangles outlined in black in Figure 16 

represent the final clustering solution. 
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Figure 16. Interactions among the classes of design problems. 

The quality of the clustering solution was considered satisfactory, and the 

structured classes of problems were then formalized, as shown in Appendix A (Table 

A3). From this table, it was possible to derive that 75.0% of methods have been 

evaluated in depth by observational techniques such as case studies. In 26.4% of the 

studies, the methods have been assessed descriptively by constructing detailed scenarios 

to demonstrate the artifacts’ utility, and in 2.8% of situations, they have been tested 

experimentally through the use of simulation. The sum of frequencies is greater than 

100% because of the methods 𝑀12, 𝑀18, and 𝑀21 have been evaluated by more than one 

approach. Regarding the type of products these methods have been developed for, 

47.2% of them have been used to design consumers’ durables, 27.8% to intermediate 

goods, 22.2% to capital goods, and 5.6% to military and defense goods. The sum of 

frequencies here is greater than 100% due to the 𝑀12 has been used to design more than 

one type of product. Still, from Table A3, it is possible to derive which technique, 
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among those 193 identified here, is intended to solve each design problem. The 

definition of each method and technique is presented in Appendix A (Table A2). 

Later, Table A3 was converted into a binary matrix (Table A4), wherein only 

primary studies (𝑅𝑖), design problems (𝑃𝑏𝑖), and classes of design problems (𝐶𝑝) were 

considered. In Table A4, the primary studies were rearranged to facilitate the 

understanding of association rules. Using the Apriori algorithm in software R, with the 

parameters set to 𝑠(𝑋 → 𝑌) ≥ 0,1, 𝑐(𝑋 → 𝑌) ≥ 0,1, and the relationship width ≥ 2, 13 

association rules were identified as shown in Figure 17. 

 

Figure 17. Association rules derived from the Apriori algorithm executed in software R. 

Rules 1 and 2 indicate that the classes of design problems 𝐶𝑝2 and 𝐶𝑝3 co-occur 

in 41.7% of the primary studies. Still, from these rules, it is possible to infer that 𝐶𝑝3 is 

more likely to appear (88.2%) when 𝐶𝑝2 is present, but the opposite does not happen 

with the same level of confidence (51.7%). The same reasoning can be applied to the 

rules from 7 to 11 but at lower support levels. Regarding the rules 3 and 4, the lift 

values are close to one, which implies no association between the classes 𝐶𝑝1 and 𝐶𝑝3 

and vice-versa. However, if the 𝐶𝑝2 is considered together, as posed by rule 9, the lift 

value increases, and the confidence reaches the level of 83.3%. Rules 5, 6, 12, and 13, 

in turn, do not follow the same pattern. The lift value lower than one means that item 

𝐶𝑝4 is unlikely to co-occur with 𝐶𝑝3, or with 𝐶𝑝2. 



 

72 

 

In this section, it was presented the results of the systematic literature review, 

wherein 72 methods, 25 design problems, 25 sub-functions, 193 techniques, 3 

evaluation approaches, and 4 types of products, were found. These methods were 

connected through its corresponding sub-functions in the form of a functional model. 

While the remaining instances were organized into structured classes of design 

problems, which had its most common association rules identified. The discussion of 

the results is presented next. 

3.4 Discussion of the Results 

The functional model elaborated in this research represents the common 

underlying structure of MBPF design methods developed over the past 20 years. In this 

sense, the model not only presents the sub-functions (main steps of the methods) 

intended to solve the design problems but also indicates the causal relationship 

(execution order) among them along with its respective input and output flows. The 

structured classes of design problems, in turn, complements the functional model by 

cataloging the techniques meant to execute each sub-function of the model. Moreover, it 

presents the definitions of methods and techniques, how they have been tested, and for 

what product they have been developed. These entities together serve as a meta-method 

for organizing the research in the field of MBPF design as well as a roadmap for 

implementing the MBPFs in industry. 

From these entities, it was possible to derive some patterns. The first thing noted 

from the association rule 1, was that, in 41.7% of the methods, the 𝐶𝑝3 has 88.2% of 

probability to exist when 𝐶𝑝2 is present. This rule consists of the most influential 

association found here and indicates a consistent presence of market considerations 

within the product family modeling. However, looking at Table A4 and considering the 
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principle that if an itemset is frequent, then all of its subsets must also be frequent (Tan 

et al., 2019), it is possible to observe that in only 6.9% of the methods, the 𝐹𝑅𝑠 derive 

from the 𝐶𝑁𝑠. In other words, among those 30 methods that consider 𝐶𝑝2 and 𝐶𝑝3 

concurrently, only 5 methods formulate the 𝐹𝑅𝑠 in sub-function 𝑆2.3 from the 𝐶𝑁𝑠 

identified in sub-function 𝑆2.1. What indicates that the 𝐹𝑅 are formulated by other 

means, such as reverse engineering and benchmarking of existing solutions (Jiao and 

Tseng, 1999a; Thevenot and Simpson, 2007; Simpson et al., 2012). These findings 

comply with previous research indications of lacking methods on customer modeling 

and integration (Jiao, Simpson and Siddique, 2007; Kumar, Chen and Simpson, 2009). 

Another interesting pattern identified in 𝐶𝑝3, is that only 4.2% of methods 

perform the functional and physical decomposition concurrently (Asan, Polat and 

Serdar, 2004; Borjesson and Hoelttae-Otto, 2014; Wei et al., 2015). The functional 

decomposition is coupled with the concept of modular product architectures (Jiao and 

Tseng, 1999a, 2000; Jiao, Simpson and Siddique, 2007), which allows each functional 

element of the product to be changed independently by only changing the corresponding 

component (Meyer and Lehnerd, 1997). The physical decomposition, in turn, relates to 

the level of coupling or interaction among components in a product (Arciniegas and 

Kim, 2011; Dong, Shao and Xiong, 2011; AlGeddawy and ElMaraghy, 2013), not 

necessarily taking into account its respective functionalities. In our point of view, the 

𝐹𝑀 must physically match the working structure (Pahl et al., 2007), therefore we 

believe these two decomposition strategies should be handled somehow together, 

otherwise, this process might result in integral architectures instead of modular ones. 

Besides that, although it is slightly tackled by the methods 𝑀1 and 𝑀72 (Jiao and Tseng, 

1999a; Gauss, Lacerda and Sellitto, 2019), in sub-functions 𝑆3.4 and 𝑆3.8, the existing 

methods seem to lack a sub-function to specify the parameters of primitive modules 
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(instance or scalable) based on the 𝐹𝑅 target values and ranges. Still, from the 𝐶𝑝3, it 

was also observed that among the 𝐹𝑀𝑠 and 𝑃𝑀𝑠 generated through the methods that 

adopt decomposition heuristics, only 20.0% were evaluated in the sub-function 𝑆3.8, 

what indicates the open-loop nature of these methods. On the other hand, among the 

𝐹𝑀𝑠 and 𝑃𝑀𝑠 decomposed through the methods that adopt meta-heuristics, 14.3% 

were evaluated in the sub-function 𝑆3.8, what does not make sense since they already 

use evaluation criteria during the optimization. 

From the rules 5 and 6, based on the lift values lower than one, it is possible to 

infer that 𝐶𝑝4 is unlikely to co-occur with 𝐶𝑝3. Although they appear together in 19.4% 

of the methods, the relationship between these classes occur, in 57.1% of the cases, by 

the utilization of the product family structure, retrieved from the subfunction 𝑆3.10, as an 

input flow for combining the modules into product family variants in sub-function 𝑆4.3. 

This relationship takes the assumption that the modules’ set already exists, being deeply 

sensitive to the ability of the existing modules in accomplishing the customer desired 

attributes (Zhu et al., 2010; Jiao, 2012; Yifei et al., 2015). To put it differently, if the 

module set is compound by low utility modules, no matter how robust the configuration 

procedure is, only low utility variants will be instantiated. 

This process of mixing, matching, and scaling modules to generate product 

family variants is assisted by meta-heuristics in 81.0% of the methods analyzed 

(Adhitama and Rosenstiel, 2015; Chowdhury et al., 2016). In this sense, broader 

business indicators such as demand, cost, price, and profit are usually employed at this 

stage to optimally solve the combinatorial and parametric problem (Li, Huang and 

Newman, 2008; Li and Huang, 2009). However, nor a threshold to evaluate if the 

variants instantiated satisfy the minimum requirements desired in a product, neither 

feedbacks flows to the sub-functions 𝑆1.1 or 𝑆3.1 leading to new modules’ developments 
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were found. Coupled with that, it is not explicit in the works examined here, the product 

family configuration (𝐶𝑝4) supporting or even playing the role of product line planning, 

an issue that has been traditionally dealt with in the management science and marketing 

literature (Jiao, Simpson and Siddique, 2007). 

Finally, although it did not appear in the most frequent association rules, it was 

noted from Table A4, that 𝑀9 (Jiang and Allada, 2005), accounting for 1.4% of the 

methods, is the unique method that integrates the four classes of design problems 

identified in this research. Linked to that, rule 9 indicates that 13.9% of the methods 

consider the three first fist classes of design problems concurrently. These results 

reinforce the previous research indication of lacking integrated design methods in this 

field (Simpson et al., 2012; Otto et al., 2016). 

3.5 Conclusions 

Over the years, active work in developing methods to design MBPFs has been 

done. However, many of them have been created, and consequently exist, in isolation 

from one other. As a result, the adoption of these methods in industry and academy 

alike is inhibited by the seemingly broad array of material without a coherent organizing 

structure. To bridge this gap, this paper performed a systematic literature review, 

wherein 72 methods (1999-2019) to design MBPFs and their respective instances have 

been connected in the form of a functional model and structured classes of design 

problems. These entities together serve as a meta-method for organizing the research in 

the field of MBPF design as well as a roadmap for implementing MBPFs in the 

industry. The main contributions of this work include: (i) constructing a functional 

model that connects the design methods for MBPFs; (ii) suggesting structured classes of 

design problems that complement the functional model by cataloging the techniques 
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meant to execute each sub-function of the model; (iii) proposing a construction heuristic 

to build and assess functional models and classes of design problems. 

Regarding the limitations of the present study, three were identified. The first 

lies in the fact that some useful literature might have been omitted since no relook at the 

references of those studies included in the review has been performed. The second is 

that association rules are sensitive to the classes of design problems. In this sense, the 

adoption of optimization techniques, using 𝑀𝐼 as an objective function, for the classes' 

formation might enhance the robustness of future research. The third is that the study 

did not catalog the tools (software) to operationalize the identified techniques. 

Our particular interest in this research regarded the module-based product family 

design, one of the approaches used to design product families. Therefore, the integrative 

connection among the existing methods and its respective shortcomings presented here 

accounted for a fraction of the theoretical framework on product family design. What 

makes us believe that future works synthesizing and integrating the extant methods to 

design product families, independent of the type of product architecture they have, 

could bring broader integrative interpretations, than the ones presented in this study. 
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4 ARTICLE 2 - MARKET-DRIVEN PRODUCT FAMILY DESIGN: 

SYSTEMATIC LITERATURE REVIEW AND META-SYNTHESIS 2 

2 Article to be submitted to the Journal of Research in Engineering Design (RED). 

Abstract: Customers’ needs continually evolve and shift over time, and the result 

is an increasing demand for product variety and newer versions of products. 

Believing the product variety can help manufacturing companies to increase sales 

and profits, many companies have been attempting to provide more product 

variants without sacrificing production efficiency. One way to manage this trade-

off is through the product family design, a field of study wherein marketing, 

engineering, and economic aspects are highly interdependent. To understand how 

the interconnected relationships among these three domains take place into the 

product family design, this paper presents a systematic literature review and 

meta-synthesis of 21 articles (1998-2019) published in peer-reviewed journals. 

The research findings are synthesized in the form of a functional model and 

structured classes of design problems, wherein the existing methods to design 

market-driven product families and their corresponding instances are connected. 

Besides that, the main contribution of this work includes the identification of four 

design problems and sub-functions not reported by previous works regarding the 

synthesis of methods for designing module-based product families. 

Keywords: product family design, market-driven product family design, 

systematic literature review, meta-synthesis. 

4.1 Introduction 

Customers’ needs continually evolve and shift over time, and their demand for 

product variety and newer versions of products has increased rapidly in recent decades 

(Simpson et al., 2014). Based on the belief the product variety can help manufacturing 

companies to increase sales and profits (Wei et al., 2015; Zhu, Li and Feng, 2017), 

many companies have been attempting to provide more product variants without 

sacrificing production efficiency (Jiao, Simpson and Siddique, 2007). 
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One way to manage this conflict is through the design of product families 

(Simpson et al., 2014). Generally, a product family refers to a set of products derived 

from a standard product platform to satisfy various market applications (Meyer and 

Lehnerd, 1997). Platforms, in turn, are intellectual and material assets shared across a 

product family to minimize manufacturing complexity (Erens and Verhulst, 1997). In 

this context, the prominent approach to product family design is through the 

development of module-based product families, wherein product family members are 

instantiated by mixing and matching functional modules from the platform (Ulrich, 

1995; Du, Jiao and Tseng, 2001). An alternative approach, considered as a subset of the 

former (Fujita and Yoshida, 2004), is through the development of a scale-based product 

family, which consists of scaling one or more variables to change the platform 

specifications while common parameters remain constant (Simpson, 2004). 

The product family design is challenging for many aspects, and addressing its 

front-end issues is a complex activity (Colombo et al., 2019). In general, the front-end 

issues are subdivided into four prevalent classes of design problems: (i) product family 

positioning, (ii) market-driven product family design, (iii) product family modeling, and 

(iv) product family configuration (Gauss, Lacerda and Miguel, 2020) (Article 1). The 

first two classes account for the marketing-related issues, which include customer 

involvement, product portfolio design, product family positioning, and transition or 

mapping from customer needs to functional requirements (Simpson et al., 2014). While 

the last two classes are grounded on engineering-related issues, which include product 

family configuration, product architecture, design of families and platforms, leveraging 

commonality and modularity, and optimization of the family and platform design 

(Simpson et al., 2014). A recent study, concerning 72 methods for designing module-

based product families, has shown that 1.4% of methods address the four classes of 
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design problems concurrently. Among those methods (41.7%) considering marketing-

related issues in its formulation, less than 7% derive the desired attributes in a product 

straight from the customers. Still from this study, it is seen that only 15.3% of methods 

account for enterprise-level indicators in product family configuration (Gauss, Lacerda 

and Miguel, 2020) (Article 1). Findings that comply with previous research indications 

of lacking methods integrating marketing, engineering, and economic aspects into 

product family design  (Jiao, Simpson and Siddique, 2007; Kumar, Chen and Simpson, 

2009; Colombo et al., 2019). 

The problem is the marketing and engineering variables are often highly 

interdependent in product family design. Moreover, the coupled relationships between 

them imply that any change in one variable can potentially influence the outputs of the 

other(s), with both affecting the economic benefits of an enterprise (Chen, Hoyle and 

Wassenaar, 2013). Therefore, in the design of optimal or near-optimal product families, 

marketing, engineering, and economic requirements often cannot be pursued separately 

or even sequentially (Luo, 2011). 

Based on the aforementioned, and given the fact the module-based approach 

accounts for a fraction of the theoretical framework on product family design, the 

following research questions arose: (i) which methods address marketing-related issues 

into product family design, independent of the type of product architecture? (ii) which 

methods encompass broader business indicators into product family design? (iii) what 

kind of design problems do these methods account for? (iv) for which type of products 

have these methods been developed? (v) how has the performance of these methods 

been assessed? (vi) what are the main steps of these methods? (vii) what is the 

execution order of these steps? (viii) which techniques are used to execute each step of 

these methods? (ix) is there a common underlying structure among these methods? 
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This paper aims at answering these questions through a systematic literature 

review in addition to a meta-synthesis of 21 articles that integrate marketing-related 

issues and broader business indicators into product family design. These articles have 

been published between 1998 and 2019 in international journals that include research on 

engineering, production, and operations management. Besides the building of a 

functional model for designing market-driven product families along with its respective 

structured classes of design problems, the main contribution of this work includes the 

identification of four design problems and sub-functions not reported by previous works 

regarding the synthesis of methods for designing module-based product families. 

The remainder of this paper is structured as follows. Section 4.2 contains the 

research approach. Section 4.3 shows the functional model and the structured classes of 

design problems resulting from the literature mapping and analysis, followed by Section 

4.4 which critically analyses the research findings. Finally, Section 4.5 presents the 

research contributions and limitations along with its future directions. 

4.2 Systematic Literature Review 

The product family design, as well as other engineering disciplines, is typically 

concerned with construction problems related to not yet existing entities (van Aken and 

Romme, 2009; Vaishnavi, Kuechler and Petter, 2017). This conception complies with 

the goals of research performed under the design science paradigm, which seeks to 

produce knowledge to solve real problems or to design something that does not yet exist 

(Simon, 1996; van Aken, 2005). While design science is the epistemological basis, 

design science research is the method that operationalizes research in this field (Lacerda 

et al., 2013). Given the conceptual coupling between product family design and design 

science, this paper adopts the nine-step systematic literature review adapted to design 

science research by Gauss, Lacerda, and Miguel (2020) (Article 1), as shown in Figure 
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18. 

 

Figure 18. Systematic literature review workflow. 

The process started by defining the market-driven product family design as the 

central topic of this research. Then, in step 1, to clarify the review question and to limit 

its scope, a conceptual framework was developed based on the fundamental references 

regarding (i) product family design, (ii) product line planning, and (iii) product 

development process. As a result, the following review questions and the search string 
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presented in Figure 18 were formulated. 

• Which methods address marketing-related issues into product family design, 

independent of the type of product architecture?  

• Which methods encompass broader business indicators into product family design?  

• What kind of design problems do these methods account for? 

• For which type of products have these methods been developed? 

• How has the performance of these methods been assessed? 

• What are the main steps of these methods? 

• What is the execution order of these steps? 

• Which techniques are used to execute each step of these methods? 

• Is there a common underlying structure among these methods? 

The search was conducted in Web of Science and Scopus since both provide 

quick access to the principal citation databases worldwide and have smart tools to track, 

analyze, and visualize research (Morandi and Camargo, 2015; Content - How Scopus 

Works - Scopus - | Elsevier solutions, 2017; Clarivate Analytics, 2019). Besides that, to 

ensure the quality of the primary studies, only articles published in peer-reviewed 

international journals have been considered. Therefore, the English language was used 

as an inclusion criterion. Concerning the period and subject area, the articles published 

up to 2020 that encompassed the research in engineering, production, and operations 

management were consulted. Appendix B (Table B1) shows additional selecting criteria 

in the search strategy protocol. 

With the research strategy defined and based on a search limited to the article 

title, abstract, and keywords, 86 primary studies were found in step 2. Then they were 

checked for duplicates, followed by an inspection of the titles and abstracts in step 3 

(Brunton, Stansfield and Thomas, 2012). After, 51 potentially relevant studies were 
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analyzed in-depth in step 4, and 21 in compliance with the research scope were selected 

for review, as shown in Figure 18. Table 18 presents the excluding statistics, while 

Table 19 gives the list of 21 primary studies included in the review. 

Table 18. Excluding statistics. 

No. of 

exclusions 
Percentage Excluding criteria 

23 35.4% 
Absence of methods or techniques addressing market considerations and broader 

business indicators into product family design 

16 24.6% Duplicated studies 

5 7.7% Manufacturing and production for product families 

5 7.7% Supply chain issues of product families 

3 4.6% Design support systems 

3 4.6% Theoretical development and synthesis of product family design 

3 4.6% Literature review on product family design 

2 3.1% Service design 

2 3.1% Paper not found 

1 1.5% Fundamental issues on product family design 

1 1.5% Out of context 

1 1.5% Software development 

61 100.0% Total 

Table 19. List of primary studies included in the review. 

Id Title Authors and year 

R1 Product line development with customer interaction (Márkus and Váncza, 1998) 

R2 
Design for variety: Developing standardized and modularized 

product platform architectures 
(Martin and Ishii, 2002) 

R3 Effective product family design using physical programming (Messac, Martinez and Simpson, 2002) 

R4 Product platform design to improve commonality in custom products (Farrell and Simpson, 2003) 

R5 Prescribing the content and timing of product upgrades (Wilhelm, Damodaran and Li, 2003) 

R6 An integrated method for designing modular products (Asan, Polat and Serdar, 2004) 

R7 A structural component-based approach for designing product family (Hsiao and Liu, 2005) 

R8 Understanding customer satisfaction in product customization (Du, Jiao and Tseng, 2006) 

R9 Mapping product design specification for mass customization (Krishnapillai and Zeid, 2006) 

R10 Designing a family of development-intensive products (Krishnan and Zhu, 2006) 

R11 
Managing modularity in product family design with functional 

modeling 
(Zhang, Tor and Britton, 2006) 

R12 
Market segmentation for product family positioning based on fuzzy 

clustering 
(Zhang, Jiao and Ma, 2007) 

R13 
A method to improve platform leveraging in a market segmentation 

grid for an existing product line 
(Farrell and Simpson, 2008) 

R14 
Optimal product portfolio formulation by merging predictive data 

mining with multilevel optimization 
(Tucker and Kim, 2008) 

R15 Optimal platform investment for product family design (Zacharias and Yassine, 2008) 

R16 
Integration of marketing research techniques into house of quality 

and product family design 
(Kazemzadeh et al., 2009) 

R17 
Evolutionary product line design balancing customer needs and 

product commonality 
(Chen, Jiao and Tseng, 2009) 

R18 A market-driven approach to product family design (Kumar, Chen and Simpson, 2009) 

R19 
Research on customer-oriented optimal configuration of product 

scheme based on Pareto genetic algorithm 
(Yifei et al., 2015) 

R20 
Product family architecture design with predictive, data-driven 

product family design method 
(Ma and Kim, 2016) 

R21 
Coordinated optimisation of platform-driven product line planning 

by bilevel programming 
(Miao et al., 2017) 

 



 

84 

 

The next step was to perform a content analysis in step 5 (Bardin, 1993; 

Mayring, 2014). With this regard, the primary studies included in the review configured 

the context units from which the registration units, i.e., text quotations, have been 

encoded (Bardin, 1993). Coupled with that a coding system composed of a mixed 

coding scheme and counting principles was established. The mixed coding scheme, 

compound by categorical and open codes is shown in Appendix B (Table B2) (Oliver 

and Sutcliffe, 2012; Dresch, Lacerda and Antunes Jr, 2015). Regarding the counting 

principles, the ones adopted in this research were the occurrence, co-occurrence, and 

frequency. The occurrence relates to the presence of code in a context unit, while co-

occurrence consists of the simultaneous presence of two or more codes in a context unit 

(Bardin, 1993). The frequency, in turn, can be determined as the number of times each 

code occurs in the corpus of analysis, in other words, the set of primary studies included 

in the review (Gauss, Lacerda and Miguel, 2020) (Article 1). 

Still in step 5, after defining the coding system, the next task was to encode and 

understand the raw data. This process was assisted by the qualitative data analysis 

software Atlas Ti (ATLAS.ti 8 Windows | ATLAS.ti, 2019), wherein 21 methods, 23 

design problems, 23 sub-functions, 56 techniques, 3 evaluation approaches, 3 types of 

products, and  4 classes of design problems were found. One important issue here was 

to link the design problem to its potential class of design problems. Besides that, it was 

also needed to identify the sequence the design problems occur along the course of the 

methods analyzed. This procedure of establishing the causal relationship between 

problems was performed through a syntopic reading (Adler and van Doren, 1972), and 

based on the reasoning of effect-cause-effect retrieved from Theory of Constraints 

thinking process (Cox and Schleier, 2010). Figure 19 gives an example of a code 



 

85 

 

hierarchy resulted from this process, wherein six design problems, organized in 

sequence, compound the second class of design problems for product families. 

 

Figure 19. Example of codes hierarchy in software Atlas Ti. 

The goal of meta-synthesis is to produce a new and integrative interpretation of 

findings that is more substantive than those resulting from individual investigations 

(Jensen and Allen, 1996; Finfgeld, 2003). In this sense, the final product is usually 

expressed in graphical form to permit mapping the nature and variety of concepts 

studied, identifying associations between different subjects, and providing explanations 

for the results from the various primary studies (Dresch, Lacerda and Antunes Jr, 2015).  

With that intention, and following the heuristic proposed by Gauss, Lacerda, and 

Miguel (2020) (Article 1), the next issue was to formulate a functional model that 

connects the functionalities of all methods identified in step 6. In this context, the first 

thing to do was to convert a design problem (𝑃𝑏𝑖) into a sub-function (𝑆𝑖) 

corresponding to an action intended to solve it. After, the sub-functions were connected 

by the information flows on which they operate. The execution order of each sub-

function followed the sequence resulting from the enconding task ilustrated in Figure 

19. Later, the clustering of design problems into classes, defined during the encoding 

process, was depicted in a design structure matrix (Browning, 2001) and had its quality 
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assessed by the Modularity Index (𝑀𝐼) (Jung and Simpson, 2017). Details on the design 

structure matrix and 𝑀𝐼 are given in its references. According to this checking, those 

problems not belonging to a previously assigned class were relocated, and the coding 

system, along with the encoding process of raw data, was updated. Figure 20 gives an 

example of a generic functional model, wherein each sub-function (𝑆𝑖) corresponds to 

an action intended to solve a particular design problem (𝑃𝑏𝑖). The dashed lines around 

the sub-functions represent a class of design problems (𝐶𝑝𝑖), defined here as a set of 

design problems which share common characteristics, and contain useful artifacts for 

their solution, i.e. 𝐶𝑝𝑖 = {𝑃𝑏𝑖, 𝑇𝑖, 𝑀𝑖} (Dresch, Lacerda and Antunes Jr, 2015).  

 

Figure 20. Example of a generic functional model (Gauss, Lacerda and Miguel, 2020). 

After checking the clustering solution, in step 7, the structured classes of design 

problems (𝐶𝑝𝑖) were established based on the co-occurrence among the design 

problems (𝑃𝑏𝑖), techniques (𝑇𝑖), methods (𝑀𝑖), evaluation approaches (𝐸𝑡𝑖), products 

classification (𝑃𝑡𝑖), and primary studies (𝑅𝑖) as shown in Table B3. Besides that, to 

support the subsequent association analysis, part of the content of Table B3 was 

converted into a binary incidence matrix, as presented by Table B4. 

The association analysis, performed in step 8, is useful for discovering 

relationships hidden in large data sets (Zhang and Zhang, 2002). The uncovered 
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relationships can be expressed in terms of association rules or sets of frequent items, 

i.e.{𝐶𝑝1} → {𝐶𝑝2}. This rule suggestes that a relationship exists between 𝐶𝑝1 and 𝐶𝑝2. 

In the context of this work, let 𝐶 = {𝑐1, 𝑐2, … 𝑐𝑖} be the set of all codes retrieved from 

the content analysis and 𝑅 = {𝑟1, 𝑟2, … 𝑟𝑖} be the set of all relationships between primary 

studies and codes. Each relationship 𝑟𝑖 contains a subset of codes assigned from 𝐶. In 

association analysis, a collection of zero or more items is termed an itemset. If an 

itemset contains 𝑘 items, it is called a k-itemset. For instance, {𝐶𝑝1, 𝐶𝑝2} is an example 

of a 2-itemset. The null (or empty) set is an itemset that does not contain any items. The 

relationship width is defined here as the number of items present in a relationship. A 

relationship 𝑟𝑖 is said to contain an itemset 𝑋 if 𝑋 is a subset of 𝑟𝑖. An essential property 

of an itemset is its support count, which refers to the number of relationships that 

contain a particular itemset (Tan et al., 2019). Mathematically, the support count, 𝜎(𝑋), 

for an itemset 𝑋 can be stated as follows: 

𝜎(𝑋) = |{𝑟𝑖|𝑋 ⊆ 𝑟𝑖, 𝑟𝑖 ∈ 𝑅}| 6 

where the symbol |. | note the number of elements in a set. An association rule is an 

implication expression of the form 𝑋 → 𝑌, where 𝑋 and 𝑌 are disjoint itemsets, i.e., 𝑋 ∩

𝑌 = ∅. The strength of an association rule can be measured in terms of its support,  

confidence, and lift (Zhang and Zhang, 2002; Gkoulalas-Divanis and Verykios, 2010; 

Tan et al., 2019). Support determines how often a rule applies to a given data set, while 

confidence determines how frequently items in 𝑌 appear in relationships that contain 𝑋. 

Lift, in turn, computes the ratio between the rule's confidence and the support of the 

itemset in the rule consequent. The formal definitions of these metrics are: 

Support, 𝑠(𝑋 → 𝑌) =
𝜎(𝑋∪𝑌)

𝑁
 7 
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Confidence, 𝑐(𝑋 → 𝑌) =
𝜎(𝑋∪𝑌)

𝜎(𝑋)
 8 

Lift, 𝑙(𝑋 → 𝑌) =
𝑐(𝑋→𝑌)

𝑠(𝑌)
 9 

A lattice structure can be used to enumerate the list of all possible itemsets. 

However, in many practical applications, the search space of itemsets is exponentially 

large (Tan et al., 2019). To reduce the search space during frequent itemset generation, 

this research adopted the Apriori, which consists of an association rule mining 

algorithm that uses support-based pruning to systematically control the exponential 

growth of candidate itemsets (Zhang and Zhang, 2002). Its execution on this work was 

performed in software R (Team, 2019). Details on the frequent itemset generation 

through the Apriori algorithm is provided in (Tan et al., 2019). 

In summary, this section provided methodological procedures for searching, 

selecting, and analyzing the content of primary studies. Besides that, with the purpose 

of synthesizing the findings, a construction heuristic to build and assess functional 

models and classes of design problems was shown. Additionally, a technique to identify 

the association rules among the classes of design problems was presented. The results of 

this process, accounting for step 9, are synthesized and presented in the next section. 

4.3 Meta-Synthesis 

The presentation of meta-synthesis is divided into two parts. The first part 

introduces the functional model that connects the market-driven product family design 

methods identified in this research. In this sense, the model not only presents the sub-

functions intended to solve the design problems but also indicates the causal 

relationship among them along with its respective input and output flows. The second 

part, in turn, shows the structured classes of design problems that complement the 
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functional model by cataloging the techniques meant to execute each sub-function of 

the model. Moreover, it presents the definitions of methods and techniques, how they 

have been tested, for what product they have been developed for, and the most common 

association rules concerning the classes and its design problems. 

4.3.1 Functional Model of Market-Driven Product Family Design 

From the corpus of analysis, 21 methods were identified. Although these 

methods do not tackle the same design problems, they somehow share the same 

objective of designing product families from a market-driven perspective. In this sense, 

following the reasoning of Stone and Wood (2000), we derived the overall function of 

this set of methods as being the: “Design market-driven product families.” The overall 

function expresses the solution-neutral relationship between inputs and outputs (Pahl et 

al., 2007). With this respect, seven inputs and one output flows were identified, as 

shown in Figure 21(a). For each input flow, a chain of sub-functions was established 

based on design problems that emerged during the content analysis. Then, the function 

chains were aggregated in a functional model, and the sub-functions were grouped into 

classes of problems, as presented in Figure 21(b). In this model, the continuous and 

dashed arrows respectively indicate the information and feedback flows among the sub-

functions, while the dashed rectangles represent the classes of design problems. 

The functional model was compound by 23 sub-functions subdivided into 4 

classes of design problems. The first class of design problems identified was the product 

family planning and positioning, which deals with market objectives and technology 

developments guided by corporate strategies (Ulrich and Eppinger, 2012). Within this 

class, the model starts by strategically planning the product family in the sub-function 

𝑆1.1, wherein strategic axes are incorporated into product family design (Jiao and Tseng, 

1999a). Some issues covered by this sub-function include the mapping of future 
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Figure 21. (a) A black box model for designing market-driven product families; (b) Functional model for designing market-driven product families. 
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product plans (Martin and Ishii, 2002; Hsiao and Liu, 2005), the optimal initial 

investment in the platform (Zacharias and Yassine, 2008), the platform leveraging 

strategies (Messac, Martinez and Simpson, 2002; Farrell and Simpson, 2003), the 

prescription of content and timing for products’ upgrades (Wilhelm, Damodaran and Li, 

2003), and the appropriateness of product modularity (Asan, Polat and Serdar, 2004). 

The market-related objectives resulting from this first step serve as an input flow for 

segmenting the market in 77.8% of the methods addressing the sub-function 𝑆1.2. The 

22.2% remaining, derive the market segments from the customers’ needs and its relative 

importance, as indicates the feedback flow coming from the sub-function 𝑆2.2. In this 

step (𝑆1.2), the market is decomposed into several segments taking into account the 

industry type, customer consumption levels, regional characteristics, among other 

factors (Kazemzadeh et al., 2009). For that reason, the clustering procedures (Zhang, 

Jiao and Ma, 2007) are usually employed here for characterizing different customer 

groups (Márkus and Váncza, 1998; Hsiao and Liu, 2005). Besides that, reverse 

engineering and benchmarking of existing solutions support the identification of 

promising product plans and platform leveraging strategies (Messac, Martinez and 

Simpson, 2002; Farrell and Simpson, 2003, 2008). The outputs here are not only target 

market segments (Tucker and Kim, 2008) but also the planning refinement feedback 

(Kumar, Chen and Simpson, 2009), as shown in Figure 21(b). Apart from the market-

related objectives, the functional requirements target values and ranges compound the 

input flows for defining and modeling the product family positioning criteria in sub-

function 𝑆1.3. The reasoning here is to provide specific variants for each segment and 

identify opportunities for adjusting products to attract more customers (Márkus and 

Váncza, 1998; Krishnan and Zhu, 2006). To that end, the product family positioning is 

usually modeled as an optimization problem based on customer preferences (Farrell and 
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Simpson, 2008; Chen, Jiao and Tseng, 2009; Kumar, Chen and Simpson, 2009; Ma and 

Kim, 2016; Miao et al., 2017), where the objective is to maximize profit, the share of 

choices, or sales (Jiao, Simpson and Siddique, 2007). Among those methods that tackle 

the sub-function S1.3, the most common criteria used to model such a problem are 

presented in Table 20. 

Table 20. Product family positioning criteria of sub-function 𝑆1.3. 

Criteria Frequency Rel. Freq. Primary study (Id.) 

Profit 6 19.4% R1, R5, R10, R18, R20, R21. 

Price 6 19.4% R1, R5, R10, R18, R20, R21. 

Demand 6 19.4% R5, R10, R17, R18, R20, R21. 

Cost 6 19.4% R1, R5, R10, R18, R20, R21. 

Utility 5 16.1% R1, R13, R18, R20, R21. 

Quality 1 3.2% R10. 

Commonality 1 3.2% R17. 

Total 31 100.0%  

After defining and modeling the positioning criteria, the selection of variants to 

make up each product line is carried out in sub-function 𝑆1.4. In 83.3% of methods 

encompassing this sub-function, the selection of product variants is performed through 

the use of meta-heuristics related to optimization problems (Farrell and Simpson, 2008; 

Chen, Jiao and Tseng, 2009; Kumar, Chen and Simpson, 2009; Ma and Kim, 2016; 

Miao et al., 2017), while the 16.7% remaining adopts heuristics (Márkus and Váncza, 

1998). Besides that, 57.1% of the variants compounding the product lines derived from 

the scale-based approach (Farrell and Simpson, 2008; Kumar, Chen and Simpson, 2009; 

Ma and Kim, 2016), and 42.9% came from the module-based approach (Márkus and 

Váncza, 1998; Chen, Jiao and Tseng, 2009; Miao et al., 2017). As a result, the expected 

output of this stage is the minimum possible number of variants that cover the maximum 

possible customer preferences for a specific segment (Simpson et al., 2014). 

The second class of design problems found was the market-driven product family 

design, which handles the transition of customer needs (𝐶𝑁) to functional requirements 

(𝐹𝑅) (Simpson et al., 2014). The first step here, in sub-function 𝑆2.1, is to identify 𝐶𝑁 
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by deriving meaning through interpretations of customers’ perceptions about the existing 

products (Asan, Polat and Serdar, 2004). This process is usually assisted by qualitative 

and quantitative techniques on data collection, analysis, and synthesis (Du, Jiao and 

Tseng, 2006; Tucker and Kim, 2008; Kazemzadeh et al., 2009). Coupled with that, 

arises the necessity to determine the relative importance (𝑤) of each need (Asan, Polat 

and Serdar, 2004; Hsiao and Liu, 2005). For that reason, the sub-function 𝑆2.2 explores 

the priority level of each desired attribute in a product and determines which is the most 

influent on customer decision making (Du, Jiao and Tseng, 2006; Kazemzadeh et al., 

2009). This market-related information must be then translated into engineering 

specifications; in other words, it should be converted into 𝐹𝑅 (Hsiao and Liu, 2005). 

This task of formulating the 𝐹𝑅𝑠 from the 𝐶𝑁𝑠 is performed by sub-function 𝑆2.3, that 

uses two strategies for that end (Asan, Polat and Serdar, 2004). The first is the inductive 

functional modelling that describes a product in terms of elementary functions required 

to achieve its overall function or purpose (Zhang, Tor and Britton, 2006; Zacharias and 

Yassine, 2008). The second is deductively elicit the 𝐹𝑅𝑠 and then map them with 𝐶𝑁𝑠 

through incidence matrices (Martin and Ishii, 2002; Kazemzadeh et al., 2009). In both 

cases, the 𝐹𝑅𝑠 might derive not only from 𝐶𝑁𝑠 but also from existing product offerings 

(Du, Jiao and Tseng, 2006). While 𝐹𝑅𝑠 are generic to all members within the same 

customer group, many functional requirement instances (𝐹𝑅∗) could result from 

different desired values for a particular 𝐹𝑅, i.e. 𝐹𝑅𝑖 = {𝐹𝑅𝑖
∗} (Martin and Ishii, 2002; 

Krishnapillai and Zeid, 2006; Ma and Kim, 2016). In this sense, the sub-function 𝑆2.4 

arranges similar 𝐹𝑅𝑠∗ into clusters (𝐹𝑅𝑇) that are characterized by a target value (𝑇𝑉) 

and a variation range (𝑉𝑅), i.e. 𝐹𝑅𝑇𝑖 = [𝑇𝑉𝑖,  𝑉𝑅𝑖] (Messac, Martinez and Simpson, 

2002; Zacharias and Yassine, 2008). Although this procedure is usually performed 

within a market segment already defined (Farrell and Simpson, 2003), some authors 
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advocate its adoption to identify the market segments in sub-function 𝑆1.2 (Zhang, Jiao 

and Ma, 2007; Kazemzadeh et al., 2009). Another critical factor that affects the level of 

granularity of product architecture is 𝐹𝑅 hierarchy (Moon, Park and Simpson, 2014). 

This issue is tackled by the sub-function 𝑆2.5 through the mapping of dependencies 

among the 𝐹𝑅 (Asan, Polat and Serdar, 2004; Zhang, Tor and Britton, 2006; Zacharias 

and Yassine, 2008; Kazemzadeh et al., 2009). Finally, through the sub-function 𝑆2.6, the 

functional view of a product family is performed from an abstract level to individual 

instances (Asan, Polat and Serdar, 2004). 

The third class of design problems identified was the product family modeling, 

which comprehends the definition of product family instances in terms of design 

parameters (𝐷𝑃) and 𝐹𝑅𝑠 (Jiao, Simpson and Siddique, 2007; Simpson et al., 2014). In 

this class, the model starts by defining and modeling the product family and platforming 

criteria in sub-function 𝑆3.1. From the design objectives coming from the sub-function 

𝑆1.1, decisions on what design approach to follow (Messac, Martinez and Simpson, 

2002; Miao et al., 2017), what criteria to use for specifying the instances (Farrell and 

Simpson, 2003; Du, Jiao and Tseng, 2006; Kumar, Chen and Simpson, 2009), and what 

strategy to adopt for identifying the platforms are made at this stage (Martin and Ishii, 

2002; Krishnapillai and Zeid, 2006). In terms of product family design, there are two 

prevalent approaches, the module-based and scale-based product family design (Messac, 

Martinez and Simpson, 2002). In the module-based approach, the product family 

members are instantiated by mixing and matching modules from the platform (Ulrich, 

1995). In the scale-based approach, one or more scaling variables are used to change the 

platform specifications (Simpson, 2004). Within the former, two decomposition streams 

arise, the functional and physical decomposition. The functional decomposition derives 

from the mapping relationships between two domains, i.e., 𝐹𝑅 → 𝐷𝑃 (Suh, 2001), while 
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the physical decomposition comes from the mapping relationships within the same 

domain, i.e., 𝐷𝑃 → 𝐷𝑃 (Krishnapillai and Zeid, 2006). Independently of what design 

approach is used, there are common criteria employed for specifying the instances or 

even identifying the platforms. These criteria, along with its frequencies, are presented 

in Table 21. 

Table 21. Product family and platforming criteria of sub-function S3.1. 

Criteria Frequency Rel. Freq. Primary study (Id.) 

Utility 4 36.4% R3, R4, R8, R18. 

Cost 3 27.3% R8, R18, R21. 

Interaction or coupling 2 18.2% R2, R9. 

Redesign effort 1 9.1% R2. 

Variety 1 9.1% R9. 

Total 11 100.0%  

Regarding the strategies adopted for identifying platforms, there are also two. 

One that considers the variability of 𝐹𝑅𝑠∗ (Krishnapillai and Zeid, 2006), and the other 

that takes into account the level of redesign effort taken across generations (Martin and 

Ishii, 2002). In both, those instances related to the low variability of 𝐹𝑅𝑠∗ or low 

redesign effort across generations are defined as platforms. Given the 𝐹𝑅 previously 

defined, the process continues by formulating the 𝐷𝑃𝑠 in sub-function 𝑆3.2 (Jiao and 

Tseng, 1999a). The 𝐷𝑃 consists of the physical effect with the ability to fulfill one or 

more 𝐹𝑅𝑠 (Gauss, Lacerda and Sellitto, 2019), and its formulation is usually based on 

the available technologies and the existing products (Messac, Martinez and Simpson, 

2002; Farrell and Simpson, 2003; Du, Jiao and Tseng, 2006). In some cases, there might 

be necessary a 𝐷𝑃 to assume different specification values (𝐷𝑃∗) to accomplish its 

correspondent 𝐹𝑅𝑇, i.e. 𝐷𝑃𝑖 = {𝐷𝑃𝑖
∗}. This task of defining the 𝐷𝑃𝑖

∗ is executed in sub-

function 𝑆3.3 (Messac, Martinez and Simpson, 2002; Ma and Kim, 2016). The 𝐷𝑃𝑠 

along with the 𝐹𝑅𝑠 configure the two constituents of the 𝑃𝐹𝐴 (Jiao and Tseng, 1999a), 

that in context of module-based product family design, can be defined as decoupled 

interfaces and the “one-to-one” mapping between 𝐹𝑅𝑠 and 𝐷𝑃𝑠 (Ulrich, 1995). This 
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mapping process is performed in the sub-function 𝑆3.4, and is usually depicted by a 

design matrix, i.e. [𝐹𝑅]𝑚 = [𝑃𝐹𝐴]𝑚×𝑛[𝐷𝑃]𝑛, where the nonblank entry 𝑎𝑖𝑗 ∈

[𝑃𝐹𝐴]𝑚×𝑛 indicates a relationship between 𝐹𝑅𝑖 and 𝐷𝑃𝑖 (Hsiao and Liu, 2005; 

Krishnapillai and Zeid, 2006; Zhang, Tor and Britton, 2006). Then, in the sub-function 

𝑆3.5, the 𝑃𝐹𝐴 is decomposed into different functional modules (𝐹𝑀), i.e. , 𝐹𝑀𝑖 =

{𝐹𝑅𝑖, 𝐷𝑃𝑖} (Wilhelm, Damodaran and Li, 2003; Zhang, Tor and Britton, 2006; Zacharias 

and Yassine, 2008). The 𝐹𝑀𝑠 must physically match the working structure (Pahl et al., 

2007). In this sense, the rough geometric layout is elaborated in sub-function 𝑆3.6 to 

identify the interactions among physical components (Asan, Polat and Serdar, 2004). 

Without this, it would be difficult to determine how subsystems, subassemblies, or parts 

are coupled (Martin and Ishii, 2002). In such cases where the functional decomposition 

is bypassed, the 𝐷𝑃𝑠 serve as an input flow for 𝑆3.6; otherwise, the 𝐹𝑀𝑠 must be 

considered. The sub-function 𝑆3.7 models these structural dependencies among 

components (Martin and Ishii, 2002), and similarly to the sub-function 𝑆3.4, this process 

is usually depicted by a design structure matrix (𝐷𝑆𝑀), i.e. [𝐷𝑃]𝑚 = [𝐷𝑆𝑀]𝑚×𝑛[𝐷𝑃]𝑛. 

However, the nonblank entry 𝑎𝑖𝑗 ∈ [𝐷𝑆𝑀]𝑚×𝑛 indicated here, represent a relationship 

between 𝐷𝑃𝑖 and 𝐷𝑃𝑖 (Hsiao and Liu, 2005; Krishnapillai and Zeid, 2006). Later, in the 

sub-function 𝑆3.8, the 𝐷𝑆𝑀 is decomposed into physical modules (𝑃𝑀), i.e. 𝑃𝑀𝑖 =

{𝐷𝑃𝑖 , 𝐷𝑃𝑖} (Asan, Polat and Serdar, 2004; Hsiao and Liu, 2005; Krishnapillai and Zeid, 

2006). The aim here is to achieve a structure where units are highly interconnected in 

themselves, but largely independent of other units (Asan, Polat and Serdar, 2004). In 

60.0% of methods addressing the sub-functions 𝑆3.5 and 𝑆3.8, the functional and physical 

decomposition are performed by heuristics (Asan, Polat and Serdar, 2004; Zhang, Tor 

and Britton, 2006; Zacharias and Yassine, 2008). The 40.0% remaining do not explicit 

the technique used (Hsiao and Liu, 2005; Krishnapillai and Zeid, 2006). In all cases, 
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both decomposition streams are executed independently of one another. Based on the 

input flows coming from the sub-functions 𝑆3.1, 𝑆3.3, 𝑆3.5 and 𝑆3.8, the product family 

instances are specified in the sub-function 𝑆3.9. Depending on the design approach used, 

scaled-based or module-based instances might arise (Messac, Martinez and Simpson, 

2002). When the scale-based approach is employed, the sub-functions from 𝑆3.4 to 𝑆3.8 

are by-passed, and the resulting instances come to integrate the searching space of sub-

function 𝑆1.4 (Ma and Kim, 2016). In such cases, the specification of variants is 

performed by meta-heuristics related to parametric optimization problems in 75.0% of 

methods (Messac, Martinez and Simpson, 2002; Farrell and Simpson, 2003; Kumar, 

Chen and Simpson, 2009). The module-based instances derived from the sub-functions 

𝑆3.5 and 𝑆3.8, in turn, go straight to the sub-function 𝑆3.10, where the structure for end 

product configuration is established (Du, Jiao and Tseng, 2006; Miao et al., 2017). The 

output of this stage is the module-based configuration structure; wherein all modules are 

supposed to add value to the product (Hsiao and Liu, 2005). Otherwise, they should not 

be included in the family (Baldwin and Clark, 2000). In this sense, the sub-function 𝑆3.11 

evaluates the product family as a whole (modular or scalable) and generates measures of 

deviation from the ideal that will serve as feedback improvements (Asan, Polat and 

Serdar, 2004; Kazemzadeh et al., 2009). The criteria used for assessing the product 

families at this stage are presented in Table 22. 

Table 22. Product family evaluation criteria of sub-function S3.11. 

Criteria Frequency Rel. Freq. Primary study (Id.) 

Modularity 1 20.0% R6. 

Commonality 1 20.0% R16. 

Utility 1 20.0% R16. 

Interaction or coupling 1 20.0% R6. 

Cost 1 20.0% R16. 

Total 5 100.0%  
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The last class of design problems found was the product family configuration, 

which deals with structural configuration problem, wherein the modules compounding 

the variants are optimally selected (Simpson et al., 2014). In this class, the model starts 

by defining and modeling the configuration criteria in sub-function 𝑆4.1 (Tucker and 

Kim, 2008). At this stage, decisions on what criteria to use for modeling the 

combinatorial problem are made (Yifei et al., 2015), and the most common criteria 

identified are presented in Table 23. 

Table 23. Configuration criteria of sub-function S4.1. 

Criteria Frequency Rel. Freq. Primary study (Id.) 

Profit 1 25.0% R14. 

Price 1 25.0% R14. 

Cost 1 25.0% R19. 

Utility 1 25.0% R19. 

Total 4 100.0%  

The configuration structure and configuration criteria serve as input flows for 

combining the modules into product family variants at sub-function 𝑆4.2. This process of 

combining modules is assisted by meta-heuristics in 100.0% of the methods analyzed 

(Tucker and Kim, 2008; Yifei et al., 2015), and similar to the scale-based instances, the 

module-based variants resulting from this process, come to integrate the searching space 

of sub-function 𝑆1.4. 

4.3.2 Structured Classes of Problems 

With the functional model defined, the next issue was to check the quality of the 

classes of design problems defined during the encoding process. To that end, the 

interactions among the classes of design problems were depicted in a design structure 

matrix to calculate the 𝑀𝐼, as shown in Figure 22.  
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Figure 22. Interactions among the classes of design problems. 

The 𝑀𝐼 assesses the quality of a clustering solution, ranging from 0 to 1, by 

capturing the degrees of connection strengths within each independent class and between 

different classes, the density of connections within each class and between classes, and 

the proximity of interactions to the diagonal of the design matrix (Jung and Simpson, 

2017). With the weighting factors set to (𝑤1, 𝑤2, 𝑤3) = (
1

3
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1

3
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3
), the 𝑀𝐼 was calculated 

and the quality of the clustering solution was found to be equals to 0.69. With 𝑀𝐼 value 

considered satisfactory, the structured classes of problems were then formalized, as 

shown in Appendix B (Table B3). From this table, it was possible to derive that 59.1% 

of methods have been evaluated in depth by observational techniques such as case 

studies. In 36.4% of the studies, the methods have been assessed descriptively by 

constructing detailed scenarios to demonstrate the artifacts’ utility, and in 4.6% of 

situations, they have been tested experimentally using simulation. The sum of 
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frequencies is higher than 100.0% because of the method 𝑀5 has been evaluated by 

more than one approach. Regarding the type of products these methods have been 

developed for, 42.9% of them have been used to design consumers’ durables, 42.9% to 

intermediate goods, and 14.2% to capital goods. Still, from Table B3, it is possible to 

derive which technique, among those 56 identified here, is intended to solve each design 

problem. The definition/function of each method and technique is presented in Appendix 

B (Table B2). 

Later, Table B3 was converted into a binary matrix represented by Table B4, 

wherein only primary studies (𝑅𝑖), design problems (𝑃𝑏𝑖), and classes of design 

problems (𝐶𝑝) were considered. In Table B4, the primary studies were rearranged to 

facilitate the understanding of the association rules. Using the Apriori algorithm in 

software R, with the parameters set to 𝑠(𝑋 → 𝑌) ≥ 0,1, 𝑐(𝑋 → 𝑌) ≥ 0,1, and the 

relationship width ≥ 2, 9 association rules were identified, as shown in Figure 23. 

 

Figure 23. Association rules derived from the Apriori algorithm executed in software R. 

Rules 1 and 2 indicate that the classes of design problems 𝐶𝑝2 and 𝐶𝑝3 co-occur 

in 52.4% of the primary studies. Still, from these rules, it is possible to infer that 𝐶𝑝3 is 

more likely to appear (91.7%) when 𝐶𝑝2 is present, but the opposite does not happen 

with the same level of confidence (84.6%). The same reasoning can be applied to the 

rules 8 and 9 but at lower support levels. Regarding the rules from 3 to 7, the lift values 

lower than one indicate the classes of design problems at the left-hand side (lhs) are 

unlikely to co-occur with the ones at the right-hand side (rhs). 
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In this section, it was presented the results of the systematic literature review, 

wherein 21 methods, 23 design problems, 23 sub-functions, 56 techniques, 3 evaluation 

approaches, and 3 types of products, were found. These methods were connected 

through its corresponding sub-functions in the form of a functional model. While the 

remaining instances were organized into structured classes of design problems, which 

had its most common association rules identified. The discussion of the results is 

presented next. 

4.4 Discussion of the Results 

The functional model elaborated in this research represents the common 

underlying structure of the market-driven product family design methods developed over 

the last 21 years. In this sense, the model not only presents the sub-functions (main steps 

of the methods) intended to solve the design problems but also indicates the causal 

relationship (execution order) among them along with its respective input and output 

flows. The structured classes of design problems, in turn, complements the functional 

model by cataloging the techniques meant to execute each sub-function of the model. 

Moreover, it presents the definitions of methods and techniques, how they have been 

tested, and for what product they have been developed. These entities together organize 

the knowledge of market-driven product family design as well as produce a new and 

integrative interpretation of this particular fraction of the field of product family design. 

From these entities, it was possible to derive some patterns. In 𝐶𝑝1, it was noted 

the market segmentation (𝑆1.2) being performed from two different perspectives. The 

first perspective, adopted in 77.8% of the methods addressing the sub-function 𝑆1.2, 

consists of deductively segmenting the market from the objectives coming from the sub-

function 𝑆1.1 (Márkus and Váncza, 1998; Messac, Martinez and Simpson, 2002; Farrell 
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and Simpson, 2003, 2008; Hsiao and Liu, 2005; Tucker and Kim, 2008; Kumar, Chen 

and Simpson, 2009). The second perspective, employed in 22.2% of methods, 

inductively derive the market segments from the customers’ needs and its relative 

importance coming from the sub-function 𝑆2.2 (Zhang, Jiao and Ma, 2007; Kazemzadeh 

et al., 2009). In this sense, a trade-off between quality and cost in market segmentation 

arises; where the data collection on customers' preferences, being performed before the 

segmentation, might generate more precise market segments, and the opposite, might 

reduce the searching space, resulting in time and costs savings. 

Still from 𝐶𝑝1, the selection of variants to make up each product line is carried 

out in sub-function 𝑆1.4, wherein 57.1% of the variants compounding the product lines 

derived from the scale-based approach (Farrell and Simpson, 2008; Kumar, Chen and 

Simpson, 2009; Ma and Kim, 2016), and 42.9% came from the module-based approach 

(Márkus and Váncza, 1998; Chen, Jiao and Tseng, 2009; Miao et al., 2017). Regarding 

the last approach, it is implicit in the works of Tucker and Tim (Tucker and Kim, 2008) 

and Yifei et al. (2015), the product family configuration (𝐶𝑝4) supporting or even 

overlapping the role of sub-functions 𝑆1.3 and 𝑆1.4 within the product family planning 

and positioning (𝐶𝑝1), two sub-functions not reported by the work of Gauss, Lacerda, 

and Miguel (2020) (Article 1). This reasoning can also be strengthened by the 

convergence among the broader business criteria (cost, demand, price, and profit) 

adopted by 9 methods (42.9%) for selecting or combining the variants in sub-functions 

𝑆1.4 and 𝑆4.2 (Márkus and Váncza, 1998; Wilhelm, Damodaran and Li, 2003; Krishnan 

and Zhu, 2006; Tucker and Kim, 2008; Chen, Jiao and Tseng, 2009; Kumar, Chen and 

Simpson, 2009; Yifei et al., 2015; Ma and Kim, 2016; Miao et al., 2017). 

Another thing noted from the association rule 1, was that, in 52.4% of the 

methods, the 𝐶𝑝3 has 91.7% of probability to exist when 𝐶𝑝2 is present. This rule 
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consists of the most influential association found here and indicates a consistent 

presence of market considerations within the product family modeling. However, 

looking at Table B4 and considering the principle that if an itemset is frequent, then all 

of its subsets must also be frequent (Tan et al., 2019), it is possible to observe that in 

only 14.3% of the methods, the 𝐹𝑅𝑠 derive from the 𝐶𝑁𝑠. In other words, among those 

11 methods that consider 𝐶𝑝2 and 𝐶𝑝3 concurrently, only 3 methods formulate the 𝐹𝑅 in 

sub-function 𝑆2.3 from the 𝐶𝑁 identified in sub-function 𝑆2.1. What indicates that the 

𝐹𝑅𝑠 are formulated by other means, such as reverse engineering and benchmarking of 

existing solutions (Jiao and Tseng, 1999a; Thevenot and Simpson, 2007; Simpson et al., 

2012). Besides that, in 𝐶𝑝3, two sub-functions, derived from the scale-based approach, 

might complement the functional model established in the work of Gauss, Lacerda, and 

Miguel (2020) (Article 1) on module-based product family design, they are: 𝑆3.3 and 

𝑆3.9. In the first, different specification values of 𝐷𝑃 are defined to accomplish its 

correspondent 𝐹𝑅𝑇 (Messac, Martinez and Simpson, 2002; Ma and Kim, 2016), while in 

the second, the parameters of product family instances are specified (Messac, Martinez 

and Simpson, 2002; Farrell and Simpson, 2003; Kumar, Chen and Simpson, 2009). Both 

can play an essential role in defining the parameters of primitive modules (instance or 

scalable), an issue not well addressed in module-based product family design methods. 

Finally, although no method covering the four classes of design problems 

identified in this research was found, rule 8 indicates that 38.1% of the methods consider 

the three first classes concurrently. These results are consistently higher than those 

obtained in our previous research on module-based product family design (Gauss, 

Lacerda and Miguel, 2020), but those 61.9% methods remaining, reinforce other 

research indications of lacking integrated methods in this field of product family design 

(Simpson et al., 2012; Otto et al., 2016). 
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4.5 Conclusions 

Customers’ needs continually evolve and shift over time, and the result is an 

increasing demand for product variety and newer versions of products. Believing the 

product variety can help manufacturing companies to increase sales and profits, many 

companies have been attempting to provide more product variants without sacrificing 

production efficiency. One way to manage this trade-off is through the product family 

design, a field of study wherein marketing, engineering, and economic aspects are often 

highly interdependent. To understand how the interconnected relationships among these 

three domains take place into the product family design, this paper presented a 

systematic literature review, wherein 21 methods (1998-2019) to design market-driven 

product families have been connected in the form of a functional model and structured 

classes of design problems. These entities together organize the knowledge of market-

driven product family design as well as produce a new and integrative interpretation of 

this particular fraction of the field of product family design. Besides that, the main 

contribution of this work includes the identification of four sub-functions (𝑆1.3, 𝑆1.4, 𝑆3.3, 

and 𝑆3.9) not reported by the work of Gauss, Lacerda, and Miguel (2020) (Article 1) 

regarding the module-based product family design. 

The main limitation of this work lies in the fact that some useful literature might 

have been omitted since no relook at the references of those studies included in the 

review has been performed. In terms of future work, we reinforce the proposition of 

Gauss, Lacerda, and Miguel (2020) to synthesize and integrate the extant methods to 

design product families. However, we suggest doing so by a longitudinal perspective 

capable of not only identifying the connections among the existing methods but also able 

to deduct its future patterns.  
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5 ARTICLE 3 - MARKET-DRIVEN MODULARITY: A DESIGN METHOD 

DEVELOPED UNDER DESIGN SCIENCE PARADIGM 3 

3 Article to be submitted to the Journal of Operations Management (JOOM). 

Abstract: This paper uses design science research (𝐷𝑆𝑅) to integrate marketing, 

engineering, and economic aspects into a single approach to conceptually design 

lucrative product families. In this sense, the traditional stages of 𝐷𝑆𝑅 

methodologies are decomposed into 32 steps to provide practical guidance on the 

artifacts’ design and evaluation. By following these steps, a field problem gives 

rise to a method, entitled Market-Driven Modularity (MDM), which is validated 

through a series of practical applications and experts’ judgments. The main 

contributions of this research include: (i) The systematic integration of four 

classes of design problems prevalent in literature into a single method to 

conceptually design lucrative product families. (ii) The proposition of an open 

architecture of techniques to execute each step of the method in contexts from low 

to high data availability. (iii) The introduction of Functional to Physical 

Decomposition, an approach to deal with functional and physical modularity in 

product family architectures. (iv) The presentation of practical guidance on the 

artifact’s design and evaluation. (v) The usage of a quantitative approach to 

measure the pragmatic validity and practical relevance. Finally, (vi) the MDM 

itself as the first method to design modular product families, developed under the 

design science paradigm. 

Keywords: design science research; product family design; modularity. 

5.1 Introduction 

The ever-increasing diversity of customers’ needs has been pushing companies 

to provide more product variants without sacrificing production efficiency (Jiao, 

Simpson and Siddique, 2007). In industry and academy alike, the negative impact of 

product variety on operational performance has been traditionally addressed by two 

complementary approaches: the product line planning and product family design (Miao 

et al., 2017). The product line planning consists of optimally selecting the group of 
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products to be marketed to one specific market (Kahn, 2012), while the product family 

design consists of designing a set of products sharing common elements yet target 

different market segments (Simpson et al., 2014). 

Although numerous product line planning methods in management science and 

marketing literature deal with the selection problem using various objectives derived 

from profit, few of them explicitly address product design details not directly perceived 

by customers (Jiao, Simpson and Siddique, 2007). These approaches normally assume 

that any combination of product attributes can somehow be attained by design engineers 

post hoc (Michalek et al., 2011). In contrast, most existing product family design 

approaches are targeted at identifying an optimal commonality decision in order to 

minimize cost while meeting pre-specified performance tiers (Kumar, Chen and 

Simpson, 2009). As a result, these engineering approaches do not sufficiently examine 

broader business indicators such as demand and profit (Michalek et al., 2011). 

The problem is the marketing and engineering variables are often highly 

interdependent in product family design. Moreover, the coupled relationships between 

them imply that any change in one variable can potentially influence the outputs of the 

other(s), with both affecting the economic benefits of an enterprise (Chen, Hoyle and 

Wassenaar, 2013). Therefore, in the design of optimal or near-optimal product families, 

marketing, engineering, and economic requirements often cannot be pursued separately 

or even sequentially (Luo, 2011). But how to integrate marketing, engineering, and 

economic aspects into a single approach to design lucrative product families? Which 

characteristics this approach should have to present satisfactory results? Is there an 

already-developed method that accomplishes these characteristics?  

Given the conceptual coupling between product family design and design 

science, this work used design science research (𝐷𝑆𝑅) to answer these questions. In this 
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sense, the traditional stages of 𝐷𝑆𝑅 methodologies have been decomposed into 32 steps 

to provide practical guidance on the artifacts’ design and evaluation. By following these 

steps, a field problem gave rise to a method, entitled Market-Driven Modularity (MDM), 

which has been validated through a series of practical applications and experts’ 

judgments. 

The main contributions of this research include: (i) The systematic integration of 

four classes of design problems prevalent the literature into a single method to 

conceptually design lucrative product families. (ii) The proposition of an open 

architecture of techniques to execute each step of the method in contexts from low to 

high data availability. (iii) The introduction of Functional to Physical Decomposition, an 

approach to deal with functional and physical modularity in product family 

architectures. (iv) The presentation of practical guidance on the artifact’s design and 

evaluation. (v) The usage of a quantitative approach to measure the pragmatic validity 

and practical relevance. Finally, (vi) the MDM itself as the first method to design 

modular product families, developed under the design science paradigm. 

The remainder of this paper is structured as follows. Section 5.2 synthesizes the 

related studies on product family design and design science research. Section 5.3 

contains the methodological procedures used to develop and validate the MDM. Section 

5.4 describes the MDM in detail. Section 5.5 presents the results of multiple evaluation 

cycles as well as the MDM’s construction and contingence heuristics. Section 5.6 

critically analyses the research findings. Finally, Section 5.7 presents the research 

contributions and limitations along with its future directions. 
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5.2 Literature Review 

The product family design is an effective strategy to provide variety at reduced 

costs (Simpson et al., 2014). Generally speaking, a product family refers to a set of 

products derived from a standard product platform to satisfy various market applications 

(Meyer and Lehnerd, 1997). Platforms, in turn, are intellectual and material assets 

shared across a family of products, to minimize manufacturing complexity (Erens and 

Verhulst, 1997). In this context, the prominent approach to product family design is 

through the development of module-based product families, wherein product family 

members are instantiated by mixing and matching functional modules from the platform 

(Ulrich, 1995; Du, Jiao and Tseng, 2001). An alternative approach, considered as a 

subset of the former (Fujita and Yoshida, 2004), is through the development of a scale-

based product family, which consists of scaling one or more variables to change the 

platform specifications while common parameters remain constant (Simpson, 2004). 

The product family design is challenging for many aspects. It involves selecting 

business strategies, considering multiple marketing issues, engineering customer needs, 

studying customer behavior and choice-related issues, as well as carefully considering 

engineering aspects of design, such as manufacturability, technological aspects, and 

design support issues (Simpson et al., 2014). In general, these problems can be grouped 

into four prevalent classes: (i) Product family positioning, which aims at maximizing 

customers’ preferences with the lowest number of variants. (ii) Market-driven product 

family design, that deals with the transition of customers’ needs to functional 

requirements. (iii) Product family modeling, which comprehends the definition of 

modules and platforms. Finally, (iv) product family configuration, wherein the modules 

compounding the variants are optimally selected (Jiao, Simpson and Siddique, 2007). 
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Over the years, active work in developing methods to design product families has 

been done (Borjesson and Hoelttae-Otto, 2014; Otto et al., 2016). Among those methods 

related to this study, the one encompassing four classes of design problems is the work 

of Jiang and Allada (2005). However, this method assumes the modules’ set already 

exists, being deeply sensitive to the ability of extant modules in accomplishing the 

customer desired attributes. Besides that, the product family configuration is used to 

configure one variant at a time instead of building an optimal or near-optimal product 

family structure. In like manner, other methods only entail the three first classes of 

design problems (Jiao and Tseng, 1999a; Asan, Polat and Serdar, 2004; Hsiao and Liu, 

2005; Kazemzadeh et al., 2009; Hsiao et al., 2013; Sahin-Sariisik et al., 2014; Ma and 

Kim, 2016; Pakkanen, Juuti and Lehtonen, 2016). But the main limitation of them lies in 

the inability to optimally or near-optimally combine the designed modules into product 

family variants or even selecting the most adequate ones to compose the product family 

structure.  

There is another group of methods, encompassing the product family modeling, 

which focuses on modules identification (Thevenot et al., 2007; Arciniegas and Kim, 

2011; Agard and Bassetto, 2013; AlGeddawy and ElMaraghy, 2013; Li et al., 2013; 

Borjesson and Hoelttae-Otto, 2014; Aydin and Ulutas, 2016; Ma et al., 2016; Hou et al., 

2017, 2018; Miao et al., 2017). Within this group, a few methods, if any, perform the 

functional and physical decomposition concurrently. Besides that, these approaches 

occasionally measure the quality of the clustering solution, indicating in this way its 

open-loop nature. Still from this group, some approaches combine the product family 

positioning with product family modeling (ElMaraghy and AlGeddawy, 2012; Simpson 

et al., 2012; Fan et al., 2015; Miao et al., 2017), while others combine the market-driven 

product family reasoning with the product family modeling (Dahmus, Gonzalez-Zugasti 
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and Otto, 2001; Zhang, Tor and Britton, 2006; Du, Jiao and Tseng, 2006; Krishnapillai 

and Zeid, 2006; Meng, Jiang and Huang, 2007; Park et al., 2008; Stone et al., 2008; 

Bonjour et al., 2009; Yan and Stewart, 2010; Emmatty and Sarmah, 2012; Yang, Yu and 

Jiang, 2014; Wei et al., 2015; Jung and Simpson, 2016; Cheng et al., 2017; Bejlegaard et 

al., 2018; Wang et al., 2018; Gauss, Lacerda and Sellitto, 2019). In both, less than a 

quarter, derive the customer desired attributes straight from themselves. 

The last group of methods focuses on the product family configuration. More 

specifically in the process of mixing, matching, and scaling modules to generate product 

family variants (Tucker and Kim, 2008; Jiao, 2012; Pate, Patterson and German, 2012; 

Hanafy and Elmaraghy, 2015; Goswami, Daultani and Tiwari, 2017; Xiao et al., 2018). 

In this group, the major part, solve the combinatorial and parametric problem through 

meta-heuristics and some use enterprise-level indicators to compound the objective 

function. Some methods also consider the product family design and configuration being 

performed together (Rai and Allada, 2003; Li, Huang and Newman, 2008; Li and 

Huang, 2009; Dong, Shao and Xiong, 2011; Chowdhury et al., 2016; Baylis, Zhang and 

McAdams, 2018; Colombo et al., 2019). However, they assume the modules’ set already 

exists, and use the configuration process to generate product family variants instead of 

building product family structures. Additionally, nor a threshold to evaluate if the 

variants instantiated satisfy the desired attributes in a product, neither feedbacks leading 

to new modules’ developments are found. Moreover, it is not explicit in these works, the 

product family configuration supporting or even playing the role of product line 

planning, an issue that has been traditionally dealt with in the management science and 

marketing literature (Jiao, Simpson and Siddique, 2007). 

The product family design, as well as other engineering disciplines, is typically 

concerned with construction problems related to not yet existing entities (van Aken and 
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Romme, 2009; Vaishnavi, Kuechler and Petter, 2017). This conception complies with 

the goals of research performed under the design science paradigm, which seeks to 

produce knowledge to solve real problems or to design something that does not yet exist 

(Simon, 1996; van Aken, 2005). While design science is the epistemological basis, 

design science research (𝐷𝑆𝑅) is the method that operationalizes research in this context 

(Lacerda et al., 2013). 𝐷𝑆𝑅, unlike other research methods, produces knowledge in the 

form of prescription or design, wherein prescription supports the problem-solving and 

design aids the artifact’s development (Dresch, Lacerda and Antunes Jr, 2015). 

Although there exists a conceptual coupling between product family design and design 

science, to the best of our knowledge, besides the works of Koh, Caldwell, and Clarkson 

(2013) and Andre and Elgh (2018), no other study has been conducted by 𝐷𝑆𝑅 in this 

field. However, these studies lack practical guidance on artifact’s design and evaluation. 

Issues not derived from the research on product family design, or any other field, but 

from the 𝐷𝑆𝑅 methodologies that only approach the research conduction from higher 

abstraction levels. 

Different methods for conducting research based on design science exist in the 

literature (Bunge, 1980; Nunamaker, Chen and Purdin, 1990; Takeda et al., 1990; Eekels 

and Roozenburg, 1991; Walls, Wyidmeyer and Sawy, 1992; Cole, 2005; Gregor and 

Jones, 2007; Peffers et al., 2007; Baskerville, Pries-Heje and Venable, 2009; Alturki, 

Gable and Bandara, 2011; van Aken, Berends and van der Bij, 2012; Dresch, Lacerda 

and Antunes Jr, 2015). Despite the differences in methods’ steps, they share the same 

outcome, which is the well-tested, well-understood, and well-documented innovative 

generic design that has been field-tested to establish pragmatic validity (van Aken, 

Chandrasekaran and Halman, 2016). According to Kvale and Brinkman in Van Burg 

(2011), the pragmatic validity has to do with “the extent to which the research creates 
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guidelines that generate the desired outcomes when those guidelines are applied”. 

However, the extant 𝐷𝑆𝑅 literature does not provide sufficient instruction on the 

artifact’s design (Gacenga et al., 2012). Moreover, there is little or no guidance on how 

or why one can or should choose among the different paradigms or methods to achieve 

𝐷𝑆𝑅 evaluation goals (Venable, Pries-Heje and Baskerville, 2016; Coetzee, 2019; 

Gassel, Reymen and Maas, 2019). 

In summary, from a product family design perspective, there is a lack of 

integrated approaches modeling the customers’ preferences and using it to design and 

configure gainful product family structures. From a design science research perspective, 

there is a lack of practical guidance on how to design and validate artifacts. This paper 

aims at bridging these gaps by developing an integrated method to conceptually design 

modular product families that balance the fulfillment of market needs and the resulting 

profitability to achieve them while providing practical guidance on the artifact’s design 

and evaluation. 

5.3 Research Design 

This study followed the 𝐷𝑆𝑅 methodology proposed by Dresch, Lacerda, and 

Antunes (2015). The 12 stages originally conceived by them were decomposed into 32 

steps for better guiding the process of artifact’s design and evaluation, as shown in 

Figure 24. In this context, the process started by identifying the missing link between 

marketing and engineering domains into product family design, as the research problem, 

in step 1.1. An issue that emerged from our experience in designing modular product 

families oriented to cost-reduction. 
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Figure 24. Research strategy. 



 

114 

 

In step 2.1, the systemic structure presented in Figure 25 was built to help us 

understand the problem (Senge, 1990). It made clear the coupling relationships between 

marketing and engineering variables into product family design, and how they affect 

broader business indicators such as demand, price, cost, and profit (Kumar, Chen and 

Simpson, 2009; Luo, 2011; Michalek et al., 2011; Chen, Hoyle and Wassenaar, 2013). 

 

Figure 25. Systemic structure. 

From an engineering mental model, we were using modularity as a mechanism to 

reduce the complexity of product family structure and consequently costs. However, this 

reinforcing feedback of increasing commonality, to reduce cost and increase profit, is 

balanced by another feedback leading to product variety, which is typically linked to a 

marketing mental model. In this system, the modular product family structure was 

identified as the high-leverage point, in other words, the variable that a small change in 

it might lead to significant system improvement (Senge, 1990). However, it would only 
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be possible to achieve substantial changes if the mental model behind the building of the 

product family structure considered marketing and engineering variables concurrently. 

Moreover, if the goal of an enterprise is to make money now and in the future (Goldratt 

and Cox, 1984), this mental model should also incorporate an economic perspective. 

Therefore, we started seeing modularity from marketing, engineering, and economic 

perspectives together, wherein the product variety and cost are moderated by profit. 

From this broader perspective, the following questions arose: (i) How to 

integrate marketing, engineering, and economic aspects into a single approach to design 

lucrative product families? (ii) Which characteristics this approach should have to 

present satisfactory results? (iii) Is there an already-developed method that accomplishes 

these characteristics? 

Based on previous knowledge and supported by literature, we started by 

enumerating the main characteristics the approach should have: 

• It should model the customers’ preferences and use it to design and configure a 

product family structure that balances the fulfillment of market needs and the 

resulting profitability to achieve them (Chen, Hoyle and Wassenaar, 2013); 

• It should entail the initial phases of the product development process since the 

cost of change grows throughout the product life-cycle, and the decisions made 

at the early design stages account for more than 80% of the product's committed 

costs (Rozenfeld et al., 2006; Mascle and Zhao, 2008; Charter and Tischner, 

2017; Xiao et al., 2018); 

• It should be used to design different types of products, such as consumer 

durables, intermediate, and capital goods; 

• It should handle the design process in contexts of low and high data availability. 
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Then, two topics were defined for searching the existent methods. The first was 

the “modular product family design” since modularity is the core of many product 

family design approaches (Simpson, Siddique and Jiao, 2006; Kong et al., 2009; Otto et 

al., 2016). The second topic, in turn, derived from the following reasoning: If modular 

approaches do not tackle the problem, which another do? Therefore, the “market-driven 

product family design” was stated. 

Later, one systematic literature review (𝑆𝐿𝑅) was performed for each topic 

(Morandi and Camargo, 2015). In this stage, the process started by formulating the 

search strategy protocols presented in Table A1 and Table B1. The protocols gave rise to 

both search strings of Figure 26, from which 364 records were reduced to 89 studies 

after the eligibility assessment. The excluding criteria leading to this data reduction are 

shown in Table 24. Then the content of each selected study was analyzed in-depth 

(Bardin, 1993). As a result, 89 methods (𝑀), 29 design problems (𝑃𝑏), 29 sub-functions 

(𝑆), 211 techniques (𝑇), 3 evaluation approaches (𝐸𝑡), 4 types of products (𝑃𝑡), and 4 

classes of design problems (𝐶𝑝) were identified. 

These findings were synthesized in steps 3.5 and 3.10, and then aggregated in the 

form of function structure of the methods (𝐹𝑆𝐴) (Stone and Wood, 2000), classification 

scheme of techniques (𝐶𝑆A) (Pahl et al., 2007), and classes of design problems (𝐶𝑝A) 

(Dresch, Lacerda and Antunes Jr, 2015) in stage 4. A process that followed the heuristic 

proposed by Gauss, Lacerda, and Miguel (2020) (Article 1). At the end of this 

exploratory phase, no method accomplishing all desired characteristics was found. 

Therefore, in step 5.1, a new proposition was done according to shows Figure 27. 

Wherein the sub-functions filled in yellow derived from the function structure of 

methods related to topic 1 (𝐹𝑆1), the sub-functions filled in blue derived from the 

function structure of methods related to topic 2 (𝐹𝑆2), and the sub-functions filled in 
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Figure 26. Results of search and eligibility for both 𝑆𝐿𝑅s. 

Table 24. Excluding statistics of both 𝑆𝐿𝑅s. 

Exclusions Percentage Excluding criteria 

98 35.6% Duplicated studies 

35 12.7% Absence of methods or techniques addressing modularity in design 

23 8.4% Absence of methods or techniques addressing marketing issues into product family design 

23 8.4% Manufacturing and production for product families 

20 7.3% Design support systems 

18 6.5% Supply chain issues of product families 

14 5.1% Literature review on product family design and modularity 

9 3.3% Theoretical development and synthesis on product family design and modularity 

8 2.9% Fundamental issues on product family design and modularity 

6 2.2% Paper not found 

5 1.8% Very specific application not liable to generalization 

3 1.1% Service design 

3 1.1% Limited applicability to scale-based product family design 

3 1.1% Out of context 

2 0.7% Customer co-design 

2 0.7% Software development 

2 0.7% Civil construction 

1 0.4% Aesthetics in product design 

275 100,0% Total 
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green derived from both, 𝐹𝑆1 and 𝐹𝑆2. The sub-functions filled in grey, in turn, were 

abductively added based on the desired characteristics that emerged during the 

awareness of the problem. 

 

Figure 27. Function structure of the proposed method (𝐹𝑆𝑀), version 6. 

With the function structure of the proposed method (𝐹𝑆𝑀) defined, the next issue 

was to select the most suitable techniques to execute its corresponding sub-functions. 

This process took place at stage 6 and started by formulating the list of functional 

requirements (𝐹𝑅𝑀) that each sub-function of the method should fulfill to contribute to 

the problem-solving. Table 25 presents the 𝐹𝑅𝑀 defined at step 6.1.
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Table 25.  Functional requirements of the method (𝐹𝑅𝑀), version 6. 

Classes of  

design problems (𝐶𝑝𝑖) 
Sub-functions (𝑆𝑖) Inputs Outputs Functional Requirements Techniques 

Cp1 - Product family  
planning and positioning 

S1.1 - Strategically plan the 

product family (𝑃𝐹) 
▪ Corporate strategy 
▪ Planning refinement 

▪ Potential market size (𝑀𝑘) 
▪ Expected profit (𝑉𝑒) 
▪ Potential market segments/niches (𝑀𝑠) 

▪ Share of market 

segments/niches (𝑆𝑀𝑠) 

▪ Price (𝑃) and performance tiers 

▪ Socio-demographic attributes (𝑆) 

▪ Product diff. attributes (𝐴)   

▪ Competing alternatives (𝐽) 
▪ Technological trends 

▪ Leveraging strategy 

▪ Estimate the potential market size (𝑀𝑘) 
and the expected profit (𝑉𝑒) 

▪ Define the product family positioning and 
its leveraging strategy 

▪ Define the technological trends for product 

family development 
▪ Define which type of project must be 

developed 

▪ Delphi (Dalkey, 1969) 
▪ Three-point estimate (Premachandra, 

2001) 
▪ Domain knowledge (Jiao and Tseng, 

1999a) 

▪ Survey (Forza, 2002) 
▪ Descriptive statistics (Montgomery and 

Runger, 2011) 

▪ Market segmentation grid (Meyer and 
Lehnerd, 1997) 

▪ Technology roadmap (Phaal and Muller, 

2009) 
▪ Aggregate project plan (Wheelwright and 

Clark, 1992) 

S1.2 - Segment the market ▪ Potential mkt. seg. / niches (𝑀𝑠) 

▪ Share of mkt. seg. / niches (𝑆𝑀𝑠) 

▪ Price (𝑃) and performance tiers 

▪ Socio-demographic attributes (𝑆) 

▪ Product diff. attributes (𝐴)   

▪ Competing alternatives (𝐽) 
▪ Technological trends 

▪ Leveraging strategy 
▪ Collected market data 

▪ Market segments (𝑀𝑠𝑖) 
▪ Planning refinement 

▪ Refine the segmentation defined apriori in 

terms of the number of segments, 
competing alternatives, share, price and 

performance tiers 

▪ Synthesize the corporate strategy into 
objective measures for product family 

development 

▪ Delphi (Dalkey, 1969) 

▪ Market segmentation grid (Meyer and 
Lehnerd, 1997) 

▪ Latent class analysis (Chen, Hoyle and 

Wassenaar, 2013) 
▪ Requirements list (Pahl et al., 2007) 

S1.3 - Build the 𝑃𝐹 

configuration model 

▪ Potential market size (𝑀𝑘) 
▪ Expected profit (𝑉𝑒) 
▪ Choice probability model (𝑃𝑟𝑒) 
▪ Design rules 

▪ Objective function and 

Constraints 

▪ Aggregate the customer’s choice 

probability, the design rules, the set of 
design parameter instances, and the 

enterprise-level indicators into a single 

model for selecting and parameterizing the 

physical modules to compound the 𝑃𝐹 

structure. 

▪ Mathematical modeling (Hilier and 

Lieberman, 2015) 

Cp2 - Customers’ choice 

modeling 

S2.1 - Identify customer-

desired attributes (𝐴) 
▪ 𝑀𝑠𝑖 = {𝑆𝑀𝑠𝑖 , 𝑃𝑖, 𝑆𝑖 , 𝐴𝑖 , 𝐽𝑖} 
▪ Customers’ needs (current and 

future) 

▪ Customers’ priorities 

▪ Customer-desired attributes (𝐴𝑖) ▪ Identify features and financial attributes 

that customers (will) consider when 

purchasing the product 

▪ Qualitative interviews (Malhotra and 

Birks, 2007) 

▪ Direct observation (Kazemzadeh et al., 
2009) 

▪ Focus group (Malhotra and Birks, 2007) 

▪ Survey (Forza, 2002) 
▪ Descriptive statistics (Montgomery and 

Runger, 2011) 

▪ Content analysis (Bardin, 1993) 

S2.2 - Formulate the 

engineering attributes (𝐸) 
 

▪ Customer-desired attributes (𝐴𝑖) 
▪ Competitors’ existing products 
▪ Company’s existing products 

▪ New 𝐸𝑖 

▪ Engineering attributes (𝐸𝑖) ▪ Transform the customer-desired attributes 

into quantifiable product properties to be 

used in the engineering product 
development process 

▪ Analysis of existing technical systems 

(Pahl et al., 2007). 

▪ Benchmarking  (Thevenot and Simpson, 
2007) 

▪ Reverse engineering (Thevenot and 

Simpson, 2007) 

S2.3 - Map the 

dependencies between 𝐴 

and 𝐸 

▪ Customer-desired attributes (𝐴𝑖) 
▪ Engineering attributes (𝐸𝑖) 

▪ [𝐴]𝑚 = [𝑅]𝑚×𝑛[𝐸]𝑛 ▪ Map the qualitative customer-desired 
attributes into quantitative engineering 

attributes to support the further 

construction of the choice models 

▪ Design matrix (Suh, 2001) 

(continued) 
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Table 25. (continued). 

Classes of  

design problems (𝐶𝑝𝑖) 
Sub-functions (𝑆𝑖) Inputs Outputs Functional Requirements Techniques 

Cp2 - Customers’ choice 

modeling 

S2.4 - Collect the 

engineering attributes 

levels (𝐸𝑣) for each 𝑀𝑠𝑖 

▪ Market segments (𝑀𝑠𝑖) 
▪ [𝐴]𝑚 = [𝑅]𝑚×𝑛[𝐸]𝑛 

▪ Competitors’ existing products 

▪ Company’s existing products 

▪ Price (𝑃) 

▪  𝐽𝑖⃗⃗ = {𝐸𝑣𝑖 , 𝑃𝑖} 
▪ New 𝐸𝑖 

▪ Collect different 𝐸 values (𝐸𝑣𝑖), and price 
(𝑃𝑖), such that a set of 𝐸𝑣𝑖 and 𝑃𝑖 belong to 

a competing alternative (𝐽𝑖), i.e. 𝐽𝑖⃗⃗ =
{𝐸𝑣𝑖 , 𝑃𝑖} 

▪ Analysis of existing technical systems 

(Pahl et al., 2007) 
▪ Benchmarking, Reverse engineering 

(Thevenot and Simpson, 2007) 

S2.5 - Construct the choice 

set (𝐶𝑠) for each 𝑀𝑠𝑖 

▪ Market segments (𝑀𝑠𝑖) 

▪  𝐽𝑖⃗⃗ = {𝐸𝑣𝑖 , 𝑃𝑖} 
▪ 𝐶𝑠 ={𝐽𝑖⃗⃗ ⊂ 𝐽𝑖⃗⃗ } 

▪ Collected market data 

▪ Reduce the number of choice alternatives 

to be evaluated without losing the 
statistical significance 

▪ Fractional factorial design (Montgomery 

and Runger, 2011) 

S2.6 - Collect data on 

customers’ preferences  
▪ Customer-desired attributes (𝐴𝑖) 
▪ Engineering attributes (𝐸𝑖) 
▪ Market segments (𝑀𝑠𝑖) 

▪ 𝐶𝑠 ={𝐽𝑖⃗⃗ ⊂ 𝐽𝑖⃗⃗ } 

▪ Customers’ preferences 

▪ Socio-demographic attributes (𝑆) 

▪ Stated preferences (𝑆𝑃) 
▪ Revealed preferences (𝑅𝑃) 

▪ Collect data on customers’ preferences by 

asking them to compare the engineering 

attributes of a product against each other, 
or to pick an alternative from a choice set 

▪ Qualitative interviews (Malhotra and 

Birks, 2007) 

▪ Focus group (Malhotra and Birks, 2007) 
▪ Survey (Forza, 2002) 

S2.7 - Build the discrete 

choice model (𝑃𝑟𝑖) for 

each 𝑀𝑠𝑖 

▪ Customer-desired attributes (𝐴𝑖) 
▪ Market segments (𝑀𝑠𝑖) 

▪ 𝐽𝑖⃗⃗ = {𝐸𝑣𝑖 , 𝑃𝑖} 
▪ Socio-demographic attributes (𝑆) 

▪ Stated preferences (𝑆𝑃) 
▪ Revealed preferences (𝑅𝑃) 

▪ 𝑃𝑟𝑖 = 𝑓(𝑀𝑠𝑖 , 𝐽𝑖 , 𝐸𝑖 , 𝑃𝑖 , 𝑆𝑖) ▪ Estimate the weights/coefficients of the 
engineering attributes, and then calculate 

the utility function for all alternative of 

each target market segment 
▪ Estimate the choice probability of each 

alternative within its market segment 

▪ Analytic hierarchy process (Alonso and 
Lamata, 2006; Saaty, 2008) 

▪ Nested logit (Chen, Hoyle and 

Wassenaar, 2013) 
▪ Maximum likelihood estimation (Chen, 

Hoyle and Wassenaar, 2013) 

▪ Data scaling (Chen, Hoyle and 
Wassenaar, 2013) 

Cp3 - Product family 

modeling 

S3.1 - Formulate the design 

parameters (𝐷𝑃) 
▪ Engineering attributes (𝐸𝑖) 
▪ Available technologies (current 

and future) 

▪ Existing products’ features and 
analogous systems 

▪ Clustering refinement 

▪ New 𝐷𝑃𝑖 

▪ Design parameters (𝐷𝑃𝑖) ▪ Define the logical entity with the ability to 

fulfill one or more 𝐸𝑖. 

▪ Domain knowledge (Jiao and Tseng, 

1999a) 
▪ Classification scheme (Pahl et al., 2007) 

S3.2 - Map the product 

family architecture (𝑃𝐹𝐴) 
▪ Engineering attributes (𝐸𝑖) 
▪ Design parameters (𝐷𝑃𝑖) 
▪ Clustering refinement 

▪ Mapping refinement 

▪ [𝐷𝑃]𝑚 = [𝑃𝐹𝐴]𝑚×𝑛[𝐸]𝑛 ▪ Map the logical coupling between the 𝐸𝑖 

and 𝐷𝑃𝑖, i.e. [𝐸]𝑚 = [𝑃𝐹𝐴]𝑚×𝑛[𝐷𝑃]𝑛. 

▪ Design matrix (Suh, 2001) 

 S3.3 - Decompose 𝑃𝐹𝐴 into 

functional modules (𝐹𝑀) 
▪ [𝐷𝑃]𝑚 = [𝑃𝐹𝐴]𝑚×𝑛[𝐸]𝑛 

▪ Clustering refinement 

▪ Functional modules (𝐹𝑀𝑖) 
▪ Integral architectures 

▪ Decompose the 𝑃𝐹𝐴 into functional 

modules (𝐹𝑀), i.e. 𝐹𝑀𝑖 = {𝐸𝑖 , 𝐷𝑃𝑖}. 
▪ Rank order clustering (King, 1980) 
▪ Cluster identification algorithm (Kusiak 

and Chow, 1987) 

 S3.4 - Evaluate the  
clustering solution 

▪ [𝐷𝑃]𝑚 = [𝑃𝐹𝐴]𝑚×𝑛[𝐸]𝑛 

▪ 𝐹𝑀𝑖 = {𝐸𝑖 , 𝐷𝑃𝑖} 
▪ Functional modularity measure (𝑀𝐼𝑓) ▪ Capture the strength and density of 

connections within each independent 𝐹𝑀 

and between different 𝐹𝑀𝑠, i.e. 𝑀𝐼𝑓 ≥ 0,5. 

▪ Modularity index (Jung and Simpson, 
2017) 

 S3.5 - Define 𝐷𝑃 instances 
(𝐷𝑃𝐼) 
 

▪ 𝐹𝑀𝑖 = {𝐸𝑖 , 𝐷𝑃𝑖} 

▪ 𝐽𝑖⃗⃗ = {𝐸𝑣𝑖 , 𝑃𝑖} 
▪ Available technologies (current 

and future) 

▪ Existing products’ features and 

analogous systems 

▪ 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖  } ▪ Define different instances (𝐷𝑃𝐼) for a 

particular 𝐷𝑃 along with its respective 𝐸𝑣 

i.e. 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖  }  

▪ Classification scheme (Pahl et al., 2007) 
▪ Analysis of existing technical systems 

(Pahl et al., 2007) 

▪ Benchmarking (Thevenot and Simpson, 
2007) 

▪ Reverse engineering (Thevenot and 

Simpson, 2007) 

(continued) 
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Table 25. (continued). 

Classes of  

design problems (𝐶𝑝𝑖) 
Sub-functions (𝑆𝑖) Inputs Outputs Functional Requirements Techniques 

Cp3 - Product family 

modeling 

S3.6 - Estimate the 𝐷𝑃𝐼  
variable cost (𝐶𝑣) 

▪ 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖  } 
▪ Historical product s’ costs 

▪ Suppliers’ quotations 
▪ Domain knowledge 

▪ 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖 , 𝐶𝑣𝑖} ▪ Estimate the variable cost (𝐶𝑣) for each 

𝐷𝑃𝐼 based on its cost-related design 

features (𝐶𝐷𝐹) 

▪ Pragmatic approach to product costing 

(Jiao and Tseng, 1999b) 
▪ Request for quotation (Gümüş, 2014) 

▪ Three-point estimate (Premachandra, 

2001) 

S3.7 - Create rough  
geometric layouts 

▪ 𝐹𝑀𝑖 = {𝐸𝑖 , 𝐷𝑃𝑖} 

▪ 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖 , 𝐶𝑣𝑖} 
▪ Physical refinement 

▪ Physical interactions 

▪ New 𝐷𝑃𝑖 

▪ Incompatible 𝐷𝑃𝐼 

▪ Identify the physical interactions between 

𝐷𝑃𝑠 

▪ Sketching e rendering (Koos Eissen et 
al., 2007) 

S3.8 - Map the structural 

dependencies among 

components 

▪ Design parameters (𝐷𝑃𝑖) 
▪ Physical interactions 

▪ Physical refinement 

[𝐷𝑃]𝑚 = [𝐷𝑆𝑀]𝑚×𝑛[𝐷𝑃]𝑛 ▪ Map the physical coupling between 𝐷𝑃𝑠, 

i.e. [𝐷𝑃]𝑚 = [𝐷𝑆𝑀]𝑚×𝑛[𝐷𝑃]𝑛. 

▪ Design structure matrix (Browning, 

2001) 

S3.9 - Decompose the 

system into physical 

modules (𝑀) 

▪ [𝐷𝑃]𝑚 = [𝐷𝑆𝑀]𝑚×𝑛[𝐷𝑃]𝑛 
▪ 𝐹𝑀𝑖 = {𝐸𝑖 , 𝐷𝑃𝑖} 
▪ Physical refinement 

▪ Physical modules (𝑀𝑖) ▪ Decompose the 𝐷𝑆𝑀 into physical 

modules (𝑀), i.e. 𝑀𝑖 = {𝐷𝑃𝑖}. 
▪ Functional to physical decomposition 

(Authors) 

S3.10 - Compare 𝑀𝑖  with 

𝐹𝑀𝑖 

▪ Functional modularity measure 

(𝑀𝐼𝑓) 

▪ 𝑀𝐼𝑝 ≥ 𝑀𝐼𝑓 ▪ Compare if 𝑀𝐼𝑝 ≥ 𝑀𝐼𝑓 ▪ Modularity index (Jung and Simpson, 

2017) 

S3.11 - Establish the design 

rules for 𝑃𝐹 configuration 
▪ 𝑀𝑖 = {𝐸𝑣𝑖

, 𝐶𝑣𝑖} ▪ Design rules 
▪ Mapping refinement 

▪ 𝑀𝑖 = {𝐸𝑣𝑖
, 𝐶𝑣𝑖} 

▪ 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖
, 𝐶𝑣𝑖|∀𝐷𝑃𝐼𝑖 ∈ 𝐷𝑃𝑖} 

▪ Define design rules for product family 
configuration 

▪ Generic bill-of-material (Li, Huang and 
Newman, 2008) 

▪ Mathematical modeling (Hilier and 

Lieberman, 2015) 

Cp4 - Product family  

configuration 
S4.1 - Combine 𝐷𝑃𝐼𝑖 to 

generate the 𝑃𝐹 variants 
(𝑃𝐹𝑣) for each 𝑀𝑠𝑖 

 

▪ Objective function and 

constraints 

▪ 𝑀𝑖 = {𝐸𝑣𝑖
, 𝐶𝑣𝑖} 

▪ 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖
, 𝐶𝑣𝑖|∀𝐷𝑃𝐼𝑖 ∈ 𝐷𝑃𝑖} 

▪ 𝑃𝐹𝑣𝑖 = {{𝐸𝑣𝑖
, 𝐶𝑣𝑖}|∀{𝐸𝑣𝑖

, 𝐶𝑣𝑖} ∈ 𝑀𝑖} 

▪ Scalable engineering attributes (𝐸𝑖) 

▪ Combine the design parameter instances to 

generate 𝑃𝐹 variants for each target market 

segment 

▪ Design heuristic - Substitute way of 

achieving functions  (Daly et al., 2012) 

▪ Genetic algorithm (Meng, Jiang and 
Huang, 2007) 

 

S4.2 - Parametrize the 

scalable 𝐸𝑖 

▪ Scalable engineering attributes 
(𝐸𝑖) 

▪ Scaled 𝐸𝑣𝑖
 ▪ Set the values for the scalable engineering 

attributes 

▪ Genetic algorithm (Meng, Jiang and 

Huang, 2007) 

S4.3 - Set the price (𝑃) 
for each 𝑃𝐹𝑣 variant 

▪ 𝑃𝐹𝑣𝑖 =

{{𝐸𝑣𝑖
, 𝐶𝑣𝑖}|∀{𝐸𝑣𝑖

, 𝐶𝑣𝑖} ∈ 𝑀𝑖} 

▪ Price (𝑃) ▪ Set the price for each product family 

variant 
 

▪ Trial-and-error (Rui, Cuervo-Cazurra and 

Annique Un, 2016) 
▪ Genetic algorithm (Meng, Jiang and 

Huang, 2007) 

 

S4.4 - Calculate the partial 

profit (𝑉𝑀𝑠) for each 𝑀𝑠𝑖 

and aggregate it into the 

𝑃𝐹 profit (𝑉) 

▪ Potential market size (𝑀𝑘) 
▪ Share of mkt. seg. / niches (𝑆𝑀𝑠) 

▪ Choice probability (𝑃𝑟𝑖) 
▪ Price (𝑃) 

▪ 𝑃𝐹 profit (𝑉) ▪ Calculate the partial profit for each target 
market segment, and then aggregate it into 

a measure that represents the product 

family profitability 

▪ Mathematical modeling (Hilier and 
Lieberman, 2015) 

 

S4.5 - Build the 𝑃𝐹 

structure 

▪ Most profitable 𝑃𝐹𝑣𝑖 ▪ 𝑃𝐹 𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒 = {𝑀𝑖} ▪ Build the product family structure with 

physical modules compound by design 

parameter instances retrieved from the 
most profitable variants of each segment 

▪ Generic bill-of-material (Li, Huang and 

Newman, 2008) 
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Then, in step 6.2, 211 techniques (𝑇𝑖) integrating the aggregated classification 

scheme (𝐶𝑆𝐴) along with 15 alternative techniques (𝐴𝑇𝑖) derived from the researcher’s 

previous knowledge have been assessed. The selection procedure employed here was 

the Elimination and Preference (Pahl et al., 2007), wherein all unsuitable techniques are 

eliminated, and among the remaining ones, those that are patently better than the rest 

are given preference. Based on functional requirements along with 5 other selecting 

criteria presented in Figure 28, 38 techniques were selected, as presented in Table 25. 

 

Figure 28. Selection chart of techniques. 

At stage 7, the internal environment of the proposed method, entitled Market-

Driven Modularity (MDM), was defined (Simon, 1996). This process started by 

building the graphical representation and the narrative description of MDM in step 7.1. 

Besides that, the mathematical model to operationalize the MDM was implemented in 

step 7.2. At the end of this stage, the first version of the method (𝑉1) was ready to be 

tested. Details on MDM will be provided in the next sections. 

Pg.

1

Technique (T) evaluated by

SELECTION CRITERIA +  Pursue technique

+ Yes -   Eliminate technique

- No ?  Collect information

? Lack of information !   Check functional requirements 

! Check functional requirements          for changes

Does it fulfill the demands of functional requirements?

Is it compatible with the neighbor techniques?

Is it technically feasible?

Does it encompass different classes of products (consumer, intermediate and capital goods)?

Are there available tools to perform the technique?

Is it preferred by the researcher?
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S1.1, T3 - -

S1.1, T4 - -

S1.1, T26 + + + + + - +

S1.1, T27 - -
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S1.1, T44 - -

S1.1, T45 + + + + + + +

S1.1, T58 - -

S1.1, T76 - -

... ... ... ... ... ... ... ... ...
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Articulates product family leveraging strategies in a multidimensional space.

Does not translate and synthesise the corporate strategy into objective measures.
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Does not translate and synthesise the corporate strategy into objective measures.

It is adopted for developing a business competitive strategy (out of boundaries of MDM)

Can be used to categorize and select which project comply with MDM scope
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Does not translate and synthesise the corporate strategy into objective measures.
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So far, the decisions made accounted for the MDM’s development. Although 

Figure 27 and Table 25 presented the MDM in its final version (𝑉6), it only reached that 

format after five evaluation/refinement cycles, as shown in Figure 24. The first cycle 

(step 8.1) was performed by the researchers themselves in a simple made-up case, 

wherein a family of modular axes was conceptually designed for seven market 

segments. The data used in the design process came from the website of eight 

competitors in this market. Figure 29 illustrates some modules retrieved from this 

process, and the opportunities for improvement resulting from it were implemented 

giving rise to the second version of the method (𝑉2). 

 

Figure 29. Family of modular axes. 

In the second cycle (step 8.2), the MDM was tested in simple made-up cases 

conducted by Graduate Students of Advanced Manufacturing. The MDM 𝑉2 was taught 

for 8 students along 12 hours, and then used to conceptually design families of tool 

trolleys and roof cargo boxes. The students were selected for convenience, and its 

characterization can be found in Table C2. At the end of the design process, the 

participants’ opinions were captured through a questionnaire composed of closed and 

open questions, as presented in Appendix D (Malhotra and Birks, 2007). The top terms, 

constructs, and dimensions associated with the questionnaire are given in Table C3. 

After data collection, then the Median (�̃�) (Montgomery and Runger, 2011) and the 
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Free-Marginal Multirater Kappa (𝑘𝑓𝑟𝑒𝑒) (Randolph, 2005) was calculated for each 

closed question. For the open questions, in turn, the Content Analysis was used to 

derive the moderating variables (𝑀𝑉𝑖) and its respective frequencies (𝑓) (Bardin, 

1993). In this context, the �̃� measures the amplitude of agreement, 𝑘𝑓𝑟𝑒𝑒 measures the 

level of agreement among the respondents, and 𝑓 measures how often the moderating 

variables (𝑀𝑉𝑖), supposed to reduce the amplitude of agreement, occur. Table 26 

presents four possible scenarios and its respective actions resulting from the 

participants’ opinions. At the end of this second cycle, the MDM was updated to 

version 3 (𝑉3). 

Table 26. Scenarios and actions resulting from participants’ opinions. 

Id. Conditions Action 

1 𝑘𝑓𝑟𝑒𝑒 ≥ 0.41 and �̃� = 3 No changes in the method are required, and the process should go-ahead to the next step. 

2 𝑘𝑓𝑟𝑒𝑒 ≥ 0.41 and �̃� < 3 Changes in the method are required, and the process should go back to step 7.1 or 7.2. 

3 𝑘𝑓𝑟𝑒𝑒 < 0.41 and �̃� = 3 Changes in the method are required, and the process should go back to step 7.1 or 7.2. 

4 𝑘𝑓𝑟𝑒𝑒 < 0.41 and �̃� < 3 Changes in the method are required, and the process should go back to step 7.1 or 7.2. 

In the third cycle (step 8.3), the MDM 𝑉3 was presented to 10 experts in product 

development instead of being tested by them. The presentation was conducted 

personally or remotely, along one hour of duration, with the audio being recorded when 

permitted. In this cycle, the audio records served as an additional source to derive 𝑀𝑉𝑖 

and 𝑓 through the Content Analysis (Bardin, 1993). The experts were selected through 

snowball sampling, wherein only individuals having a bachelor's degree and more than 

five years of experience in product development have been included (Floyd and Fowler, 

2014). The characterization of the participants can also be found in Table C2. At the end 

of this cycle, the opportunities for improvement led us to update the method to its 

version 4 (𝑉4). 

The fourth cycle (step 8.4) followed the same reasoning of the third but with 

slight differences. Here, a 15 min video presenting the MDM 𝑉4 was recorded. The 

video along with supplementary material was sent to 9 scholars worldwide. Among 
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them, 5 responded to the questionnaire, and 4 gave their impressions by e-mail. In this 

cycle, the e-mails served as an additional source to derive 𝑀𝑉𝑖 and 𝑓 through the 

Content Analysis (Bardin, 1993). The scholars were selected by judgment and snowball 

sampling, wherein those individuals conducting research related to product 

development were included. The characterization of the participants is found in Table 

C2. At the end of this cycle, the MDM was updated to version 5 (𝑉5). 

The last evaluation cycle (step 8.5) was performed by the researchers themselves 

in a more complex made-up case, wherein a family of collaborative robotic palletizers 

was conceptually designed for six market niches (Popple, 2009). The MDM (𝑉5) 

application was supported by two experts, and the data used in the design process came 

from projects quoted by two machine manufacturers, as well as from the website of 

three leading competitors in this market. Figure 30 illustrates some modules derived 

from this process, and the shortcomings resulting from it were used to update the 

method to its final (𝑉6). 

 

Figure 30. Family of collaborative robotic palletizers. 

The outputs of stage 8 are the duly evaluated method (𝑀𝐷𝑀 𝑉6) along with its 
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construction and contingency heuristics (Dresch, Lacerda and Antunes Jr, 2015). The 

learnings achieved during the MDM’s design and evaluation were identified in step 9.1 

and then cataloged in Table C1 (Cole, 2005; van Aken, Berends and van der Bij, 2012). 

In step 10.1, the research contributions, limitations as well its future directions were 

formalized (Vaishnavi, Kuechler and Petter, 2017). While in step 11.1, the MDM, 

together with its construction and contingency heuristics, were generalized for a 

particular class of design problems (Venable, 2006; Gregor, 2009). The outcomes of 

stages from 8 to 11 will be presented in the two next sections.  

Finally, at stage 12, the knowledge generated from the research process was 

compiled into four articles to be shared with scholars and practitioners. The first two 

articles encompassed the procedures and results retrieved from the two problem-related 

topics investigated in the systematic literature review stage. The third article (this one) 

covered the MDM’s design and evaluation from a design science perspective. The last 

article entailed the MDM in its functional state applied to a complex made-up case. 

5.4 Proposed Method: Market-Driven Modularity 

The Market-Driven Modularity (MDM) consists of an integrated method to 

conceptually design modular product families that balance the fulfillment of market 

needs and the resulting profitability to achieve them. To prevent the development of 

non-profitable product families, the MDM uses the discrete choice modeling for 

quantifying the customers’ preferences, modularity as a mechanism to provide product 

variety, the product family as a strategy to manage the trade-off between the variety and 

cost, and profit as a moderating variable to balance the level of accomplishment of the 

customers’ needs. 
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Concerning its external environment, the MDM is intended to be adopted in the 

early design stages of the product development process of small, midsize, and large 

companies that produce consumer durables, intermediate, and capital goods. Besides 

that, the MDM has been developed to redesign the existing families from a modular 

point of view as well as to design new modules, new families, and new generations of 

families, in contexts from low to high data availability. 

Regarding the internal functional environment, it is composed of 26 steps, 

arranged in 4 classes of design problems, that can be performed by, at least, 38 

techniques. The reasoning behind the method is to define the target market segments, 

model the customers’ choice probabilities for each of them, and then define a modular 

product family architecture, corresponding to all segments. With the product family 

architecture defined, the design parameter instances are generated and combined into a 

finite set of variants for each segment. Then, after setting the price, the demand is 

estimated, and the resulting profit of each variant is calculated. The most profitable 

variants have their gain aggregated into the product family profit, and the design 

parameter instances compounding them are selected to integrate the physical modules of 

the product family structure. If the product family profit matches the expected profit, the 

process is finished. Otherwise, the process should be restarted until the product family 

reaches the desired gain or until it is discarded. The two expected MDM outcomes are: 

(i) the modular product family structure that better balances the fulfillment of market 

needs and the resulting profitability to achieve them, (ii) and the decision on investing 

or not in the product family design.  

From a more detailed perspective, the MDM method starts by converting the 

corporate strategy into objective measures for product family design, as shown in Figure 

31. This process takes place at the first class of design problems, named here as Product 



 

128 

 

 

Figure 31. Internal Functional Environment of MDM.
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Family Planning and Positioning (𝐶𝑝1). Within this class, at step 𝑆1.1, the potential market 

size (𝑀𝑘) and the expected profit (𝑉𝑒) are estimated. Besides that, the target market segments 

(𝑀𝑠), the technological trends and the product family leveraging strategy are also established. 

In the next step (𝑆1.2), the market segmentation is refined, and the resulting specifications 

serve as an input flow for identifying the customer desired attributes (𝐴) at stage 𝑆2.1, or, as 

feedback for improving the strategic product family planning at stage 𝑆1.1. 

The identification of customers’ desired attributes consists of the first step (𝑆2.1) of 

the second class of design problems entitled here as the Customers’ Choice Modeling (𝐶𝑝2). 

These attributes might derive from current or future needs and despite its nature, they need to 

be converted into a language that engineers use to develop products. In some cases, the data 

gathered here (𝑆2.1) might be useful for refining the market segmentation at the previous step. 

The translation from customers’ to engineering attributes (𝐸) is performed at the stage 𝑆2.2, 

and the relationship (𝑅) between them is mapped in step 𝑆2.3, i.e. [𝐴]𝑚 = [𝑅]𝑚×𝑛[𝐸]𝑛. Those 

customer-related engineering attributes should go forward to step 𝑆2.4; otherwise, they should 

be discarded.  In general, the engineering attributes might assume different levels within and 

across segments; for that reason, at stage 𝑆2.4, a set of competing alternatives (𝐽) for each 

segment is captured. Each competing alternative consists of a vector compound by 

engineering attribute values (𝐸𝑣) and price (𝑃), i.e. 𝐽𝑖⃗⃗ = {𝐸𝑣𝑖 , 𝑃𝑖}. For those market pull 

product families, the competing alternatives usually derive from competitors or the company's 

existing products, while, for those technology push product families, the alternatives are 

deducted based on the product family planning and positioning. In both situations, the life-

cycle of the competing alternative should be assessed before deciding if it is going to integrate 

the choice set. At this stage (𝑆2.4), new engineering attributes might emerge; in such cases, 

they serve as feedback for the step 𝑆2.2. The next step is to define the set of alternatives by 

which the customers will state their preferences within each segment. Sometimes, the number 
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of alternatives might be particularly high, difficulting in this way, the preference statement. 

When it happens, the choice set (𝐶𝑠) must be reduced without losing the statistical 

significance in step 𝑆2.5, i.e. 𝐶𝑠 ={𝐽𝑖⃗⃗ ⊂ 𝐽𝑖⃗⃗ }. In situations where the data reduction is not 

required, the step 𝑆2.5 should be by-passed. With the choice set defined, the data on 

customers’ preferences are collected in stage 𝑆2.6. In contexts of low data availability, the key 

customers, or experts in the field, are asked to compare the customer desired attributes against 

each other for each target market segment. In contexts of high data availability, in turn, the 

customers are requested to pick an alternative from a choice set, emulating in this way, the 

real purchasing decisions within each segment. At stage 𝑆2.7, depending on the technique 

used, the engineering attributes’ coefficients (𝛽), or weights (𝑤), are estimated based on 

customers' stated/revealed preferences. Then, the utility (𝑊) and the choice probability (𝑃𝑟) 

of each alternative comprising the same target segment are modeled. If any deviation on 

market segmentation is found during the customers’ choice modeling, the process should 

restart until the marginal difference become insignificant. 

With the customer’s choice modeled, the next issue is to define the product family 

architecture, decompose it into functional/physical modules, and then generate the design 

parameter instances that can potentially compose the product family structure. This process is 

performed in the third class of problems named here as Product Family Modeling (𝐶𝑝3). 

Within this class, at stage 𝑆3.1, the process starts by formulating those logical entities with the 

ability to accomplish one or more engineering attributes. These logical entities are named here 

as design parameters (𝐷𝑃), and their formulation derives not only from the available 

technology and existing product features but also from future technology trends and analogy 

with other systems. Once defined, the design parameters are mapped to engineering attributes, 

giving rise to the product family architecture (𝑃𝐹𝐴) in stage 𝑆3.2, i.e. [𝐷𝑃]𝑚 =

[𝑃𝐹𝐴]𝑚×𝑛[𝐸]𝑛. The product family architecture defined here comprises all target segments 
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together, and it should be designed to meet the functional independence axiom (Suh, 1998). 

Then, at stage 𝑆3.3, the product family architecture is decomposed into functional modules 

(𝐹𝑀) and have its clustering solution evaluated at stage 𝑆3.4, i.e. 𝐹𝑀𝑖 = {𝐸𝑖, 𝐷𝑃𝑖}. If the 

clustering solution accomplishes the desired level of functional modularity, i.e. 𝑀𝑓 ≥ 0,5, the 

process should go forward. Otherwise, the clustering refinement should be performed until it 

reaches the expected value or until an integral architecture is found, i.e. 𝑀𝑓 < 0,5. In the last 

situation , the process should be finished as indicated by Figure 31. With the functional 

modules defined, the next issue is to specify the engineering attributes values (𝐸𝑣) resulting 

from different physical characteristics that a design parameter might assume. This task of 

defining the design parameter instances (𝐷𝑃𝐼) is performed at the stage 𝑆3.5, i.e. 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  =

{𝐸𝑣𝑖 }. Couple with that arises the trade-off between the engineering attribute levels and the 

costs to achieve it. For that reason, the variable cost (𝐶𝑣) of each design parameter instance is 

estimated at stage 𝑆3.6, i.e. 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖, 𝐶𝑣 }. The variable cost is assumed here to overcome 

the limitations of traditional cost accountability in dealing with product mix-related decisions 

(Cox and Schleier, 2010). After that, to identify the physical interactions within and across 

functional modules, rough geometric layouts are created in step 𝑆3.7. In this step, just as 

incompatible design parameter instances may be discarded, new design parameters might 

emerge giving rise to feedback from here (𝑆3.7) to the stage 𝑆3.1. The physical interactions 

resulting from this step, serve as an input flow for mapping the structural dependencies 

among design parameters in step 𝑆3.8. Then, at stage 𝑆3.9, the functional decomposition is 

transferred to the physical decomposition, and the relationship between these two modularity 

indices is evaluated at stage 𝑆3.10. The reasoning here is that the physical modularity must not 

prevent the functional modularity as suggests Figure 32. 
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Figure 32. Relationship between functional (𝑀𝑓) and physical (𝑀𝑝) modularity indices. 

If a modular architecture unconstrained by physical interactions is reached, i.e. 

(𝑀𝐼𝑝 ≥ 𝑀𝐼𝑓 | 𝑀𝐼𝑓 ≥ 0,5), the process goes forward. Otherwise, the iterative refinement on 

physical modularity should be performed until it reaches the desired value. Finally, the design 

rules for product family configuration are defined at the stage 𝑆3.11. It is also seen that when 

setting the configuration rules, modifications to the product family architecture may arise as 

indicated by the feedback to step 𝑆3.2. 

Back to the first class (𝐶𝑝1), at stage 𝑆1.3, the issue is to aggregate the customer’s 

choice probability, the design rules, the set of design parameter instances, and the enterprise-

level indicators (demand, price, and profit) into a single model for combining, selecting and 

parameterizing the design parameter instance to compound the modular product family 

structure. This configuration process takes place in the fourth class of design problems, 

named here as Product Family Configuration (𝐶𝑝4). At this class, the process starts at the 

stage 𝑆4.1, where the design parameter instances are combined into family variants for each 

target market segment. If some design parameter instances contain scalable engineering 

attributes, its values are adjusted in the step 𝑆4.2. With the product variant configured and 

parametrized, the price (𝑃) is set at stage 𝑆4.3, and its demand (𝑄) and partial profit (𝑉𝑀𝑠) are 
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calculated in the next step. The 𝑆4.4 not only calculates the partial profit of each variant in its 

respective segment but also aggregates it into the product family profit (𝑉). The steps from 

𝑆4.1 to 𝑆4.4 of this fourth class are performed repeatedly until it reaches the optimal or near-

optimal profitability. At the end of this process, the non-profitable variants are discarded, and 

the resulting product family profitability is compared to the expected gain (𝑉𝑒). If it is 

considered satisfactory, i.e. 𝑉 ≥ 𝑉𝑒, those most profitable variants are computed, and the 

design parameter instances compounding them are selected to integrate physical modules of 

the product family structure at the stage 𝑆4.5. Otherwise, the process should be restarted until 

the product family reaches the desired value or until it is discarded. The output of the 

proposed method is the modular product family structure that better balance the trade-off 

between the fulfillment of market needs and the resulting profitability to meet them. 

Therefore, this is the structure that should be developed in the subsequent design stages of the 

product development process, not covered in this research. 

Depending on the company’s maturity and the context of data availability, different 

techniques might be adopted to execute each step of the method. In this sense, Table 27 

complements the MDM functional structure by presenting an open architecture of techniques. 

The reasoning behind Table 27 is that, for each key activity compounding a method’s step, 

there are one or more techniques capable of executing it. Those techniques placed at the left-

hand side of the column Techniques are more suitable for contexts of low data availability. 

While those positioned at the right-hand side are more suitable for contexts of high data 

availability. Those techniques placed in the middle, in turn, can be used for both scenarios. 
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Table 27. MDM’s open architecture of techniques. 

Classes of design problems (𝐶𝑝𝑖) Steps of the method (𝑆𝑖)  Key activities (low data availability)                                        Techniques                                        (high data availability) 

Cp1 - Product family  

planning and positioning 

S1.1 - Strategically plan the 

product family (𝑃𝐹) 
Estimate the potential market size (𝑀𝑘) and the 

expected profit (𝑉𝑒). 
Delphi (Dalkey, 1969), 

Three-point estimate (Premachandra, 2001), 
Domain knowledge (Jiao and Tseng, 1999a). 

Survey (Forza, 2002), 

Descriptive statistics 
(Montgomery and Runger, 2011). 

Define the product family positioning and its 

leveraging strategy. 

Market segmentation grid (Meyer and Lehnerd, 1997). 

Define the technological trends for product family 

development. 

Technology roadmap (Phaal and Muller, 2009). 

Define which type of project must be developed. Aggregate project plan (Wheelwright and Clark, 1992). 

S1.2 - Segment the market Refine the segmentation defined apriori in terms of 

the number of segments, competing alternatives, 
share, price and performance tiers. 

Delphi (Dalkey, 1969), 

Market segmentation grid 
(Meyer and Lehnerd, 1997). 

Latent class analysis 

 (Chen, Hoyle and Wassenaar, 2013). 

Synthesize the corporate strategy into objective 

measures for product family development. 

Requirements list (Pahl et al., 2007). 

S1.3 - Build the 𝑃𝐹 configuration 

model 

 

Aggregate the customer’s choice probability, the 
design rules, the set of design parameter instances, 

and the enterprise-level indicators into a single 

model for selecting and parameterizing the physical 

modules to compound the 𝑃𝐹 structure. 

Mathematical modeling (Hilier and Lieberman, 2015). 

Cp2 - Customers’ choice 

modeling 

S2.1 - Identify customer-desired 

attributes (𝐴) 
Identify features and financial attributes that 

customers (will) consider when purchasing the 
product. 

Qualitative interviews (Malhotra and Birks, 2007); 

Direct observation (Kazemzadeh et al., 2009); 
Focus group (Malhotra and Birks, 2007). 

Survey (Forza, 2002), 

Descriptive statistics 
 (Montgomery and Runger, 2011). 

Content analysis (Bardin, 1993). 

S2.2 - Formulate the engineering 

attributes (𝐸) 
 

Transform the customer-desired attributes into 

quantifiable product properties to be used in the 

engineering product development process. 

Analysis of existing technical systems (Pahl et al., 2007). 
Benchmarking, Reverse engineering (Thevenot and Simpson, 2007). 

S2.3 - Map the dependencies 

between 𝐴 and 𝐸 

 

Map the qualitative customer-desired attributes into 

quantitative engineering attributes to support the 

further construction of the choice models. 

Design matrix (Suh, 2001). 

 

S2.4 - Collect the engineering 

attributes levels (𝐸𝑣) for each 

𝑀𝑠𝑖 

Collect different 𝐸 values (𝐸𝑣𝑖), and price (𝑃𝑖), 
such that a set of 𝐸𝑣𝑖 and 𝑃𝑖 belong to a competing 

alternative (𝐽𝑖), i.e. 𝐽𝑖⃗⃗ = {𝐸𝑣𝑖 , 𝑃𝑖}. 

Analysis of existing technical systems (Pahl et al., 2007). 

Benchmarking, Reverse engineering (Thevenot and Simpson, 2007). 

S2.5 - Construct the choice set 
(𝐶𝑠) for each 𝑀𝑠𝑖 

Reduce the number of choice alternatives to be 

evaluated without losing the statistical significance. 

 Fractional factorial design 

(Montgomery and Runger, 2011). 

S2.6 - Collect data on customers’ 
preferences 

Collect data on customers’ preferences by asking 
them to compare the engineering attributes of a 

product against each other, or to pick an alternative 

from a choice set. 

Qualitative interviews (Malhotra and Birks, 2007); 
Focus group (Malhotra and Birks, 2007). 

 

Survey (Forza, 2002). 

 
S2.7 - Build the discrete choice 

model (𝑃𝑟𝑖) for each 𝑀𝑠𝑖 

 

Estimate the weights/coefficients of the engineering 
attributes, and then calculate the utility function for 

all alternative of each target market segment. 

Analytic hierarchy process 
(Alonso and Lamata, 2006; Saaty, 2008). 

 

Nested logit, Maximum likelihood estimation 
(Chen, Hoyle and Wassenaar, 2013). 

 
Estimate the choice probability of each alternative 

within its market segment. 

Analytic hierarchy process (Saaty, 2008); 

Data scaling (Chen, Hoyle and Wassenaar, 2013). 

Nested Logit 

(Chen, Hoyle and Wassenaar, 2013). 

(continued) 
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Table 27. (Continued) 

Classes of design problems (𝐶𝑝𝑖) Steps of the method (𝑆𝑖)  Key activities (low data availability)                                        Techniques                                        (high data availability) 

Cp3 - Product family modeling S3.1 - Formulate the design 

parameters (𝐷𝑃) 
Define the logical entity with the ability to fulfill 

one or more 𝐸𝑖.  

Domain knowledge (Jiao and Tseng, 1999a), 

Classification scheme (Pahl et al., 2007). 

S3.2 - Map the product family 

architecture (𝑃𝐹𝐴) 
Map the logical coupling between the 𝐸𝑖 and 𝐷𝑃𝑖, 

i.e. [𝐸]𝑚 = [𝑃𝐹𝐴]𝑚×𝑛[𝐷𝑃]𝑛. 

Design matrix (Suh, 2001). 

S3.3 - Decompose 𝑃𝐹𝐴 into 

functional modules (𝐹𝑀) 
Decompose the 𝑃𝐹𝐴 into functional modules (𝐹𝑀), 
i.e. 𝐹𝑀𝑖 = {𝐸𝑖 , 𝐷𝑃𝑖}. 

Rank order clustering (King, 1980), 

Cluster identification algorithm (Kusiak and Chow, 1987). 

S3.4 - Evaluate the  
clustering solution 

 

Capture the strength and density of connections 

within each independent 𝐹𝑀 and between different 

𝐹𝑀𝑠, i.e. 𝑀𝐼𝑓 ≥ 0,5. 

Modularity index (Jung and Simpson, 2017). 

S3.5 - Define 𝐷𝑃 instances (𝐷𝑃𝐼) 
 

Define different instances (𝐷𝑃𝐼) for a particular 𝐷𝑃 

along with its respective 𝐸𝑣 i.e. 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖  } 

Classification scheme, Analysis of existing technical systems (Pahl et al., 2007). 
Benchmarking, Reverse engineering (Thevenot and Simpson, 2007). 

S3.6 - Estimate the 𝐷𝑃𝐼  
variable cost (𝐶𝑣) 
 

Estimate the variable cost (𝐶𝑣) for each 𝐷𝑃𝐼 based 

on its cost-related design features (𝐶𝐷𝐹). 
Pragmatic approach to product costing (Jiao and Tseng, 1999b), 

Request for quotation (Gümüş, 2014), 
Three-point estimate (Premachandra, 2001). 

S3.7 - Create rough  

geometric layouts 
Identify the physical interactions between 𝐷𝑃𝑠. 

 

Sketching e rendering (Koos Eissen et al., 2007). 

S3.8 - Map the structural 

dependencies among components 
Map the physical coupling between 𝐷𝑃𝑠, 

i.e. [𝐷𝑃]𝑚 = [𝐷𝑆𝑀]𝑚×𝑛[𝐷𝑃]𝑛. 

Design structure matrix (Browning, 2001). 

S3.9 - Decompose the system into 

physical modules (𝑀) 
Decompose the 𝐷𝑆𝑀 into physical modules (𝑀), 
i.e. 𝑀𝑖 = {𝐷𝑃𝑖}. 

Functional to physical decomposition (Authors). 

 

S3.10 - Compare 𝑀𝑖  with 𝐹𝑀𝑖 Compare if 𝑀𝐼𝑝 ≥ 𝑀𝐼𝑓. Modularity index (Jung and Simpson, 2017). 

S3.11 - Establish the design rules 

for 𝑃𝐹 configuration 

Define design rules for product family 
configuration. 

Generic bill-of-material (Li, Huang and Newman, 2008), 
Mathematical modeling (Hilier and Lieberman, 2015). 

Cp4 – Product Family 

Configuration 

S4.1 - Combine 𝐷𝑃𝐼𝑖 to generate 

the 𝑃𝐹 variants (𝑃𝐹𝑣) for each 

𝑀𝑠𝑖 

 

Combine the design parameter instances to generate 

𝑃𝐹 variants for each target market segment. 

Design heuristic - Substitute way of achieving 

functions  (Daly et al., 2012). 
 

Genetic algorithm (Meng, Jiang and Huang, 2007). 

 

S4.2 - Parametrize the scalable 𝐸𝑖 

 

Set the values for the scalable engineering 

attributes. 
Design heuristic - Scale up or down 

(Daly et al., 2012).  

Genetic algorithm (Meng, Jiang and Huang, 2007). 

 

S4.3 - Set the price (𝑃) 
for each 𝑃𝐹𝑣 variant 

Set the price for each product family variant. 
 

Trial-and-error 
(Rui, Cuervo-Cazurra and Annique Un, 2016). 

 

Genetic algorithm (Meng, Jiang and Huang, 2007). 
 

S4.4 - Calculate the partial profit 
(𝑉𝑀𝑠) for each 𝑀𝑠𝑖 and aggregate 

it into the 𝑃𝐹 profit (𝑉) 

Calculate the partial profit for each target market 

segment, and then aggregate it into a measure that 
represents the product family profitability. 

Mathematical modeling 

(Hilier and Lieberman, 2015). 

S4.5 - Build the 𝑃𝐹 structure 

 

Build the product family structure with physical 

modules compound by design parameter instances 

retrieved from the most profitable variants of each 
segment. 

Generic bill-of-material (Li, Huang and Newman, 2008). 
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5.5 Results 

This section presents the results of the MDM evaluation cycles, divided into four sub-

sections: (i) results of evaluation cycle 1, (ii) results of evaluation cycles 2, 3, and 4, (iii) 

results of evaluation cycle 5, and (iv) construction and contingency heuristics. 

5.5.1 Results of Evaluation Cycle 1 

In the first cycle, the MDM was used to conceptually design a family of modular axes 

for seven market segments (𝑀𝑠). The total market size (𝑀𝑘), in terms of axes a year, and the 

share of each market segment (𝑆𝑀𝑠) was estimated according to Table 28. After that, the 

customers’ choice probabilities (𝑃𝑟) and the modular product family architecture were 

modeled. Coupled with that, the design parameter instances (𝐷𝑃𝐼) along with its respective 

engineering attribute values (𝐸𝑣) and variables cost (𝐶𝑣) were defined, i.e. 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖 , 𝐶𝑣 }. 

As a result, 5 functional modules (𝐹𝑀) and 23 design parameter instances gave rise to design 

space with 576 potential product family variants, as shown in Figure 34 (a). Then, the MDM’s 

configuration model (Figure 33) was used to select the most profitable variants, one for each 

target market niche, as presented in Table 28. The last row of this table shows the results of 

the product family 1 (𝑃𝐹1) covering all segments together, wherein the maximum profit 

found was 𝑉 = 2.08x106 [𝑈𝑆𝐷/𝑦𝑒𝑎𝑟]. 

Later, the design parameter instances compounding the most profitable variants were 

selected to integrate the final structure of product family 1. The solution compound by 5 

physical modules (𝑀), 13 design parameter instances, and capable of generating up to 96 

variants is shown in Figure 34 (b). However, no threshold indicating if it is worth it to invest 

in the product family design was considered in the MDM 𝑉1. This learning, as well as the 

others achieved in this first cycle of evaluation, are given in Table C1. 
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Figure 33. MDM’s configuration model. 

Table 28. Results of the configuration process of product family 1. 

𝑀𝑠 Product family variant (𝑋 )  𝑀𝑘 𝑆𝑀𝑠 𝑃𝑟 𝑄 𝐶𝑣 [USD/SKU] 𝑃 [USD/SKU] 𝑉𝑀𝑠 [USD/year] 

Ms1 [DPI1.5, DPI2.2, DPI3.6, DPI4.1, DPI5.1]   200,000 28.0% 14.5% 8,110 3.95 54.13 406,937.29 

Ms2 [DPI1.5, DPI2.1, DPI3.7, DPI4.1, DPI5.2]  200,000 13.0% 21.7% 5,638 3.36 75.67 407,639.69 
Ms3 [DPI1.5, DPI2.1, DPI3.7, DPI4.1, DPI5.2]  200,000 23.0% 22.6% 10,375 3.36 62.00 608,368.62 

Ms4 [DPI1.7, DPI2.1, DPI3.7, DPI4.1, DPI5.2]  200,000 3.0% 17.9% 1,073 3.51 85.00 87,454.72 

Ms5 [DPI1.6, DPI2.1, DPI3.4, DPI4.1, DPI5.2]  200,000 23.0% 13.9% 6,399 7.33 77.50 449,011.06 
Ms6 [DPI1.6, DPI2.1, DPI3.5, DPI4.3, DPI5.2]  200,000 2.0% 30.1% 1,205 6.56 65.00 70,426.49 

Ms7 [DPI1.6, DPI2.2, DPI3.4, DPI4.1, DPI5.2]  200,000 8.0% 10.6% 1,694 7.43 39.00 53,486.66 

PF1 [DPI1.5, DPI1.6, DPI1.7, DPI2.1, DPI2.2, 
 DPI3.4, DPI3.5, DPI3.6, DPI3.7, DPI4.1, 

 DPI4.3, DPI5.1, DPI5.2] 

 200,000 100.0% 17.2% 34,495 157,087.58 2,240,412.10 2,083,324.52 

 

 

Figure 34. (a) Potential structure of product family 1; (b) Final structure of product family 1. 
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5.5.2 Results of Evaluation Cycles 2, 3, and 4 

The results of evaluation cycles 2, 3, and 4 are summarized in Table 29. In this table, 

the hierarchy between the top terms, constructs, dimensions, and moderating variables is 

depicted, while its respective definitions are given in Table C3. The underlined numbers 

presented in Table 29 point out those values below the acceptable threshold adopted in this 

research, i.e. 𝑘𝑓𝑟𝑒𝑒 < 0.41 or �̃� < 3. Besides that, the characters within parentheses indicate 

to which question the dimension is related to. 

In general, the pragmatic validity and practical relevance reached the highest 

amplitude of agreement (�̃� = 3). Regarding the level of agreement among ratters, these top 

terms ranged from moderate (0.41 < 𝑘𝑓𝑟𝑒𝑒 < 0.6) to substantial agreement (0.61 < 𝑘𝑓𝑟𝑒𝑒 <

0.8) in cycles 2 and 3, and from slight (0.01 < 𝑘𝑓𝑟𝑒𝑒 < 0.2) to fair (0.21 < 𝑘𝑓𝑟𝑒𝑒 < 0.4) 

agreement in cycle 4 (Landis and Koch, 1977). Concerning the constructs, the internal 

environment appeared to be the most robust one, since it fell within scenario 1 (𝑘𝑓𝑟𝑒𝑒 ≥ 0.41 

and �̃� = 3) in the three cycles of evaluation. One construct that did not originally integrate the 

questionnaire was the artifact’s evaluation, which emerged from the content analysis of those 

responses given by e-mail. Despite the satisfying results of the top terms and constructs in 

cycles 2 and 3, were the dimensions’ results, and its respective moderating variables (𝑀𝑉𝑖) 

that led us to refine the MDM from version 2 to 5. The learnings achieved during these 

evaluation cycles, and how they influenced the MDM updates are given in Table C1. 
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Table 29. Results of the evaluation cycles 2, 3 and 4. 

Top term / Construct / Dimension / Moderating variable Cycle 2 

Students (n=8) 

Cycle 3 

Experts (n=10) 

Cycle 4 

Scholars (n=5/9) 
  x̃ kfree f x̃ kfree f x̃ kfree f 

1.0 Pragmatic validity 3 0.66 - 3 0.55 - 3 0.16 - 

1.1 External environment 3 0.75 - 3 0.67 - 3 0.28 - 

1.1.1 (Q07) Company size 3 0.63 - 3 0.30 - 2 -0.05 - 
MV.02 Cultural barriers - - 0 - - 1 - - 0 

MV.09 Method's complexity - - 0 - - 0 - - 1 

MV.11 Organizational immaturity - - 0 - - 2 - - 2 
MV.28 Complex products - - 0 - - 0 - - 1 

MV.29 Low scale orders - - 0 - - 0 - - 1 

MV.35 Divergent key performance indicators (KPI) - - 0 - - 1 - - 0 
1.1.2 (Q09) Production strategy 3 0.63 - 3 1.00 - 2 0.10 - 

MV.29 Low scale orders - - 0 - - 0 - - 3 

1.1.3 (Q11) Product development phases 3 1.00 - 3 0.70 - 3 0.10 - 
MV.02 Cultural barriers - - 0 - - 1 - - 0 

MV.09 Method's complexity - - 0 - - 1 - - 1 

MV.10 Lack of a design supporting system - - 1 - - 2 - - 0 
MV.11 Organizational immaturity - - 1 - - 0 - - 1 

1.1.4 (Q13) Product type 3 0.63 - 3 1.00 - 3 0.10 - 

MV.01 Aesthetics requirements - - 1 - - 1 - - 0 
MV.03 Manufacturing under the customer's drawings - - 1 - - 0 - - 0 

MV.07 Convenience goods - - 1 - - 0 - - 0 

MV.28 Complex products - - 0 - - 0 - - 1 
1.1.5 (Q15) Single market segment 3 1.00 - 3 0.30 - 3 1.00 - 

MV.04 Low heterogeneity - - 1 - - 0 - - 0 

1.1.6 (Q17) Multiple market segments 3 0.63 - 3 0.70 - 3 0.40 - 
MV.01 Aesthetics requirements - - 1 - - 0 - - 0 

MV.11 Organizational immaturity - - 0 - - 0 - - 1 

MV.28 Complex products - - 0 - - 0 - - 1 
1.2 Internal environment 3 0.59 - 3 0.46 - 3 0.59 - 

1.2.1 (Q19) Steps' sufficiency 3 1.00 - 3 0.17 - 2 1.00 - 

MV.11 Organizational immaturity - - 0 - - 0 - - 1 
MV.12 Redundant steps - - 0 - - 1 - - 0 

MV.28 Complex products - - 1 - - 0 - - 1 

1.2.2 (Q21) Steps' execution order 3 0.63 - 3 0.47 - 3 0.63 - 
MV.09 Method's complexity - - 1 - - 0 - - 1 

1.2.3 (Q23) Adequacy of feedback flows 3 1.00 - 3 0.47 - 3 1.00 - 

MV.14 Customers' satisfaction feedback - - 0 - - 1 - - 0 
1.2.4 (Q25) Applicability of techniques 3 0.20 - 3 0.47 - 3 0.20 - 

MV.06 Other existing techniques - - 1 - - 0 - - 0 

MV.15 bottom-up techniques - - 0 - - 1 - - 0 
MV.28 Complex products - - 0 - - 0 - - 1 

1.2.5 (Q27) Suitability of qualitative techniques 3 0.63 - 3 0.70 - 3 0.63 - 

MV.05 Uncertainty of estimated data - - 4 - - 0 - - 0 
1.2.6 (Q29) Suitability of quantitative techniques 3 0.36 - 3 0.47 - 2 0.36 - 

MV.30 Qualitative techniques - - 0 - - 0 - - 2 

                1.2.7 (Q31) Applicability of existing tools 3 0.30 - 3 0.47 - 3 0.30 - 
MV.11 Organizational immaturity - - 0 - - 2 - - 1 

                1.2.8 (Q33) Missing steps - - - - - - - - - 
MV.08 Willingness to modularization - - 1 - - 0 - - 0 

MV.16 Future customers' needs - - 0 - - 1 - - 0 

MV.17 Life-cycle of competing alternatives - - 0 - - 1 - - 0 

MV.18 Modularization as function of production volume - - 0 - - 1 - - 0 

MV.19 Regulatory standards - - 0 - - 1 - - 0 

MV.20 Management of change - - 0 - - 1 - - 0 
MV.21 Strategic pricing definition - - 0 - - 1 - - 0 

MV.22 Configuration management - - 0 - - 1 - - 0 

MV.27 Technological trends - - 0 - - 1 - - 0 
MV.31 Modularity maturity level - - 0 - - 0 - - 1 

        1.3 Artifacts' evaluation - - - - - - - - - 

                1.3.1 (NA) Artifact's evaluation - - - - - - - - - 
MV.33 Practical application - - 0 - - 0 - - 3 

(continued) 
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Table 29. (continued). 

Top term / Construct / Dimension / Moderating variable Cycle 2 

Students (n=8) 

Cycle 3 

Experts (n=10) 

Cycle 4 

Scholars (n=5/9) 
  x̃ kfree f x̃ kfree f x̃ kfree f 

2.0 Practical relevance 3 0.70 - 3 0.58 - 3 0.25 - 

2.1 General utility 3 0.70 - 3 0.58 - 3 0.25 - 

2.1.1 (Q34) Customers' choice modeling 3 0.36 - 3 0.30 - 3 0.40 - 
MV.05 Uncertainty of estimated data - - 1 - - 0 - - 0 

MV.13 Future customers' needs - - 0 - - 2 - - 1 

2.1.2 (Q36) Market-driven variants 3 1.00 - 3 1.00 - 3 0.40 - 
2.1.3 (Q38) Balance of market needs and profitability 3 1.00 - 3 0.30 - 3 0.40 - 

MV.05 Uncertainty of estimated data - - 0 - - 1 - - 0 

MV.13 Future customers' needs - - 0 - - 0 - - 1 
MV.23 Fixed costs - - 0 - - 1 - - 0 

MV.26 Uncertainty of cost estimation - - 0 - - 0 - - 1 

MV.32 Uncertainty of market size estimation - - 0 - - 0 - - 1 
2.1.4 (Q40) Product family economic potential 3 0.20 - 3 0.20 - 3 0.10 - 

MV.05 Uncertainty of estimated data - - 2 - - 2 - - 1 

MV.13 Future customers' needs - - 0 - - 0 - - 1 
MV.17 Life-cycle of competing alternatives - - 0 - - 1 - - 0 

MV.23 Fixed costs - - 0 - - 1 - - 0 

MV.24 Price of competing alternatives - - 0 - - 1 - - 0 
MV.26 Uncertainty of cost estimation - - 0 - - 1 - - 0 

MV.32 Uncertainty of market size estimation - - 0 - - 0 - - 1 

2.1.5 (Q42) Trade-off between variety and cost 3 1.00 - 3 0.70 - 2 -0.20 - 
2.1.6 (Q44) Utility 3 0.63 - 3 1.00 - 3 0.40 - 

MV.09 Method's complexity - - 2 - - 0 - - 2 

MV.25 Clarify the design strategy - - 0 - - 1 - - 0 
MV.34 Static scenarios under a deterministic perspective - - 0 - - 0 - - 1 

5.5.3 Results of Evaluation Cycle 5 

In cycle 5, the MDM was used to conceptually design a family of collaborative robotic 

palletizers. First, collaborative robotics was identified as a technological trend in the palletizer 

market. Then, future opportunities related to it guided the definition of six target market 

niches (𝑀𝑠) and its respective parameters. The total market size (𝑀𝑘), in terms of palletizing 

positions a year, and the share of each market niche (𝑆𝑀𝑠) was estimated according to Table 

30. At this stage, an expected profit 𝑉𝑒 ≥ 2x106 [𝑈𝑆𝐷 𝑦𝑒𝑎𝑟⁄ ] was defined as the threshold 

that would justify the investment in the product family design. After that, the customer’s 

choice probabilities (𝑃𝑟𝑖) and the modular product family architecture were modeled. 

Coupled with that, the design parameter instances (𝐷𝑃𝐼) along with its respective engineering 

attribute values (𝐸𝑣) and variables cost (𝐶𝑣) were defined, i.e. 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖, 𝐶𝑣 }. As a result, 

9 functional modules (𝐹𝑀) and 110 design parameter instances gave rise to a design space 

overcoming millions of potential product family variants, as shown in Figure 35 (a). Then, the 

MDM’s configuration model (Figure 33) was used to select the most profitable variants, one 
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for each target market niche, as presented in Table 30. The last row of this table shows the 

results of the product family 2 (𝑃𝐹2) covering all niches together. The maximum profit 

found, 𝑉 = 11.9x106 [𝑈𝑆𝐷/𝑦𝑒𝑎𝑟], was higher than the expected profit 𝑉𝑒 =

2x106 [𝑈𝑆𝐷 𝑦𝑒𝑎𝑟⁄ ], indicating in this way that it would be worth it to invest in the product 

family design. 

Table 30. Results of the configuration process of product family 2. 

𝑀𝑠 Product family variant (𝑋 ) 𝑀𝑘 𝑆𝑀𝑠 𝑃𝑟 𝑄 𝐶𝑣 [USD/SKU] 𝑃 [USD/SKU] 𝑉𝑀𝑠 [USD/year] 

Ms1.1 [DPI1.5, DPI2.2, DPI5.2, 

 DPI4.7, DPI11.1, DPI7.3]  

773 10.0% 13.9% 11 36,650.50 157,500.00 1,329,344.50 

Ms1.2 [DPI1.5, DPI2.2, DPI5.18, 

 DPI4.7, DPI11.1, DP12.1, DPI7.3] 

773 7.0% 17.9% 9 44,850.50 157,500.00 1,126,495.00 

Ms1.3 [DPI1.5, DPI2.2, DPI5.38, 
 DPI4.21, DPI11.1, DPI7.3] 

773 3.0% 17.4% 4 46,255.50 157,500.00 444,978.00 

Ms2.1 [DPI1.5, DPI2.2, DPI5.32, DPI4.20, 

 DPI11.1, DPI12.4, DPI7.1, DPI8.4, 
 DPI9.1, DPI10.1, DPI6.3, DP13.1, DP3.1] 

773 38.0% 19.2% 56 170,480.50 245,000.00 4,173,092.00 

Ms2.2 [DPI1.5, DPI2.2, DPI5.32, DPI4.20, 

 DPI11.1, DPI12.4, DPI7.1, DPI8.1, 
 DPI9.1, DPI10.1, DPI6.3, DP13.1, DP3.1]  

773 26.0% 19.2% 39 170,293.00 245,000.00 2,913,573.00 

Ms2.3 [DPI1.5, DPI2.2, DPI5.39, DPI4.20, 

 DPI11.1, DPI12.4, DPI7.1, DPI8.1, 
 DPI9.1, DPI10.1, DPI6.3, DPI13.1, DPI3.1]  

773 11.0% 25.2% 21 167,793.00 260,000.00 1,936,347.00 

PF2 [DPI1.5, DPI2.2, DPI5.2, DPI5.18, DPI5.32, 

 DPI5.38, DPI5.39, DPI4.7, DPI4.20, 

 DPI 4.21, DPI11.1, DPI12.1, DPI12.4, 

 DPI7.1, DPI7.3, DPI8.1, DPI8.4, DPI9.1, 

 DPI10.1, DPI6.3, DPI13.1, DPI3.1] 

773 95.0% 18.2% 141 20,748,670.50 32,672,500.00 11,923,829.50 

With the product family profit considered satisfactory, the design parameter instances 

compounding the most profitable variants were selected to integrate the final structure of 

family 2. The solution compound by 9 physical modules (𝑀), 22 design parameter instances, 

and capable of generating up to 120 variants is shown in Figure 35 (b). According to the 

MDM proposition, this is the product family structure that better balances the fulfillment of 

market needs and the resulting profitability to achieve them. Therefore, is the one that should 

be developed in the subsequent design stages of the product development process.  
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Figure 35. (a) Potential structure of product family 2; (b) Final structure of product family 2. 

To assess the limits of MDM’s configuration model, a sensitivity analysis was 

performed guided by the following question: What are the values of the influencing variables 

(𝑉𝑎𝑟) that would keep the MDM outcomes the same? To answer this question, 8 scenarios 

were evaluated in comparison to the one obtained in the last row of Table 30 (Scenario 0), as 

shown in Table 31. The strategy adopted here was to change one influencing variable at a 

time while keeping the others constant. 
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Table 31. Sensitive analysis. 

Scenario 𝑉𝑎𝑟 ∆𝑉𝑎𝑟 𝑀𝑘 𝑆𝑀𝑠  𝑃𝑟 𝑄 𝐶𝑣 [USD] 𝑃 [USD] 𝑉 [USD/year] ∆𝑉 

0 - Highest price (base) 𝑃 - 773 95% 18.2% 141 20,748,670.50 32,672,500.00 11,923,829.50 - 

1 - Minimum price 𝑃 -14.3% 773 95% 19.4% 150 21,674,605.00 29,607,857.14 7,933,252.14 -33.5% 

2 - Minimum market size 𝑀𝑘 -10.2% 694 95% 18.2% 128 18,726,009.00 29,632,500.00 10,906,491.00 -8.5% 

3 - Different share of  

market niches 
𝑆𝑀𝑠 random 773 95% 16.6% 127 13,898,271.00 26,177,500.00 12,279,229.00 3.0% 

4 - Variation in the 𝐷𝑃𝐼’s 

variable cost 

𝐶𝑣 ±97.0% 773 95% 18.2% 141 17,661,010.43 32,672,500.00 15,011,489.57 25.9% 

5 - Variation in the 𝐷𝑃𝐼’s 

engineering attribute values 

𝐸𝑣 ±6.0% 773 95% 18.3% 142 20,919,151.00 32,917,500.00 11,998,349.00 0.6% 

6 - Variation in the engineering 

attribute weights 
𝑤 ±40.0% 773 95% 18.1% 140 20,578,377.50 32,427,500.00 11,849,122.50 -0.6% 

7 - Variation in the engineering 
attribute values of competing 

alternatives 

𝐸𝑣 ±13.0% 773 95% 18.2% 141 20,748,858.00 32,672,500.00 11,923,642.00 0.0% 

8 - Addition of one more 
competing alternative within 

each market niche 

𝐽 +20.0% 773 95% 15.1% 116 17,141,865.50 26,925,000.00 9,783,134.50 -18.0% 

The results indicated that the product family structure is more sensitive than the 

decision on investment in the product family design. In other words, it was the product family 

structure that limited the increase of ∆𝑉𝑎𝑟. Also, the variable that influenced it the most was 

the engineering attribute value (𝐸𝑣), since a small change on it (±6.0%), would originate 

different structural solutions. The decision on investment in the product family design, in turn, 

is most influenced by the price (𝑃) followed by the variable cost (𝐶𝑣). It can be seen by its 

respective variations in profit (-33.5% and +25.9%) presented in Scenarios 1 and 4. These 

results indicate, that even from a deterministic perspective, the outcomes of the MDM are 

reasonably stable. The learnings achieved during this evaluation cycle, and how they 

influenced the MDM updates are given in Table C1. At the end of these five cycles, the MDM 

was considered ready to be used on a large scale. 

5.5.4 Construction and Contingency Heuristics 

The construction heuristic consists of the set of design rules leading to the proper 

functioning of the artifact’s internal environment. The contingency heuristic, in turn, defines 

the artifact’s limits and its using conditions regarding the external environment (Dresch, 

Lacerda and Antunes Jr, 2015). To synthesize both, the CIMO-logic was used, as shown in 

Table 32. The reasoning behind CIMO is: For this problem-in-Context, it is useful to use this 
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Intervention, which will produce through these Mechanisms this Outcome (Denyer, Tranfield 

and Van Aken, 2008). In this sense, the contingency heuristic has to do with the Context, 

while the construction heuristic relates to the Intervention and Mechanism. Coupled with that, 

two more variables were considered, the Evidence and Limitations.  

Table 32. Market-Driven Modularity boundaries. 
 

Artifact: Market-Driven Modularity (MDM) Evidence 

Context Design lucrative product families regarding the following dimensions:  

    D1 Company size (see LM1):  

          D1.1 Small; Cycles 2 and 5 

          D1.2 Midsize; Cycles 1 and 2 

          D1.3 Large. Cycles 3 and 4 

    D2 Production strategy (see LM2):  

          D2.1 Make-to-stock (MTS); Cycles 1, 2 ,3 and 4 

          D2.2 Assemble-to-order (ATO);  Cycles 2 ,3 and 4 

          D2.3 Make-to-order (MTO). Cycles 2, 3, 4 and 5 

    D3 Product development phase:  

          D3.1 Planning; Cycles 1, 2, 3 and 5 

          D3.2 Conceptual design; Cycles 1, 2, 3 and 5 

          D3.3 System-level design. Cycles 1, 2, 3 and 5 

    D4 Product type (see LM3 and LM4):  

          D4.1 Consumer durables; Cycles 1, 2, and 3 

          D4.2 Intermediate goods; Cycles 2, and 3 

          D4.3 Capital goods. Cycles 2, 3, and 5 

    D5 Market amplitude (see LM5):  

          D5.1 Single segment; Cycles 2 and 4 

          D5.2 Multiple segments. Cycles 1, 2, 3 and 5 

    D6 Design strategy:  

          D6.1 Redesign of existing families; Cycle 2 

          D6.2 Design of new families; Cycles 1 and 2 

          D6.3 Design of new modules; Cycle 5 

          D6.4 Design of new generations of families. Cycle 5 

    D7 Data availability (see LM6):  

          D7.1 Low data availability; Cycles 1, 2 and 5 

    D8 Data behavior:  

          D8.1 Deterministic. Cycles 1, 2 and 5 

    D9 Scenario behavior:  

          D8.2 Single and static. Cycles 1, 2 and 5 

Intervention I1 Strategically plan the product family positioning:  

      I1.1 Define the technological trends for a specific target market; Cycle 5 

      I1.2 Identify future product opportunities related to technological trends; Cycle 5 

      I1.3 Estimate the potential market size; Cycles 1 and 5 

      I1.4 Segment the market and estimate its respective shares; Cycles 1 and 5 

      I1.5 Stablish the product family leveraging strategy; Cycles 1 and 5 

      I1.6 Define the expected profit that justifies the investment in the product family. Cycles 5 

 I2 Model the customers’ choice:  

      I2.1 Define the customer-related engineering attributes; Cycles 1 and 5 

      I2.2 Select the potential competing alternatives for each segment; Cycles 1 and 5 

      I2.3 Identify the engineering attribute values and price for each alternative; Cycles 1 and 5 

      I2.4 Capture customer preferences; Cycles 1 and 5 

      I2.5 Model the customer’s choice for each target market segment. Cycles 1 and 5 

(continued) 
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Table 32. (continued). 
 

Artifact: Market-Driven Modularity (MDM) Evidence 

Intervention I3 Model the product family:  

      I3.1 Formulate the design parameters; Cycles 1 and 5 

      I3.2 Define the modular product family architecture covering all segments; Cycles 1 and 5 

      I3.3 Specify the deign parameter instances in terms of engineering attribute values 

            and variable cost; 

Cycles 1 and 5 

      I3.4 Stablish the design rules for product family configuration.  Cycles 1 and 5 

 I4 Configure the product family structure:  

      I4.1 Define the number of  variants to be configured to each segment; Cycles 1 and 5 

      I4.2 Configure the variants and set the price; Cycles 1 and 5 

      I4.3 Calculate the demand and profit for each variant; Cycles 1 and 5 

      I4.4 Select the most profitable variants and aggregate its partial profits into the 

            product family profit; 

Cycles 1 and 5 

      I4.5 Compare the product family profit with the expected profit; Cycle 5 

      I4.6 Build the final product family structure with the design parameter instances 

            compounding the most profitable variants of each segment. 

Cycles 1 and 5 

Mechanism M1 The MDM’s internal environment (26 steps arranged in 4 classes of design 

       problems, that can be performed by, at least, 38 techniques). 

Cycles 1, 2, 3, 4, 

and 5 

Outcomes O1 Decision on investing or not in the product family design; Cycle 5 

 O2 The product family structure that better balance the fulfillment of market needs 

      and the resulting profitability to achieve them. 

Cycles 1 and 5 

Limitations LM1 The MDM is more suitable to be adopted by large companies due to the 

required knowledge base and organizational structure; 

Cycles 2 and 3 

 LM2 The MDM is not adequate for those companies, where the orders are not typically 

         repeated on a large scale, i.e. ETO; 

Cycle 4 

 LM3 The potential inability of modularity in providing aesthetics variety, an attribute 

          deeply required in consumer durables. This issue led us to think that MDM is 

          more suitable for designing “low dependent product parts”, an expression used 

          in the automotive industry to refer to those parts not related to the product style; 

Cycle 3 

 LM4 The MDM is more suitable to design products of any complexity but at high 

         granularity levels; 

Cycles 4 and 5 

 LM5 The low heterogeneity of a single market segment might reduce the effect of MDM; Cycle 3 

 LM6 Although the MDM has been designed to be used in contexts of high data 

         availability, it has not been empirically tested in this situation so far. Therefore 

         its suitability for this context is theoretically grounded on previous works such as 

         (Kumar, Chen and Simpson, 2009; Chen, Hoyle and Wassenaar, 2013). 

Previous studies 

5.6 Discussion of the Results 

In evaluation cycles, 2, 3, and 4 the opinions of students, experts, and scholars were 

captured to measure the pragmatic validity and practical relevance. In this context, it was 

noted that, although the amplitude of agreement reached the highest value (�̃� = 3) in the 

three cycles, the level of agreement among raters (𝑘𝑓𝑟𝑒𝑒) decreases from cycle 2 to 4, as 

shown in Figure 36. We believe that two potential reasons might explain this behavior. The 

first has to do with the ability to critically analyze a subject, which increases as more is 

known about it. The second relates to the time employed to understand a situation, which 

implies a reduction of understanding as less contact you have with it. In cycles 2, 3, and 4, the 

knowledge about the product family design increased along the cycles, and the time exposure 
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to understand the proposed method, decreased from 12 hours in cycle 2, passing to 1 hour in 

cycle 3, achieving 15 min. in cycle 4. 

 

Figure 36. Comparison of the level of agreement among raters (𝑘𝑓𝑟𝑒𝑒). 

We do not know which of these two reasons determined this pattern, but we advise, 

for future research, to keep the same procedure and time exposure for, at least, the experts and 

scholars. Another interesting issue, brought by three scholars who evaluated the MDM was 

that, in their opinion, the empirical application of the artifact, either in made up or real cases, 

is more substantial than the experts’ judgment (see learning 24 of Table C1). However, 

depending on the boundary conditions of the artifact being developed, it might be unfeasible 

to test it in all situations required. For that reason, this research combined both, the empirical 

application along with experts’ judgment to produce valuable additional information on 

pragmatic validity and practical relevance (van Aken, Chandrasekaran and Halman, 2016). 

Even with that strategy, there was a situation (see LM6 Table 32) in which the MDM could 

not be tested, having its applicability supported by previous research. Finally, this work 

performed 5 cycles until it reaches a satisfactory solution, however, it may vary depending on 

the research scope. Thus, for future research, we suggest changing the number of cycles, in 
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the conditional decision at the end of stage 8, to the question mark Saturation reached?, 

referring to the instance of the law of diminishing returns (Eisenhardt, 1989). 

5.7 Conclusions 

This paper used design science research (𝐷𝑆𝑅) to integrate marketing, engineering, 

and economic domains into a single approach to design lucrative product families. In this 

sense, the traditional stages of 𝐷𝑆𝑅 methodologies were decomposed into 32 steps to provide 

practical guidance on the artifacts’ design and evaluation. By following these steps, a field 

problem gave rise to a method, entitled Market-Driven Modularity (MDM), which was 

validated through a series of practical applications and experts’ judgments. The main 

contributions of this research include: (i) The systematic integration of four classes of design 

problems prevalent in literature into a single method to conceptually design lucrative product 

families. (ii) The proposition of an open architecture of techniques to execute each step of the 

method in contexts from low to high data availability. (iii) The introduction of Functional to 

Physical Decomposition, an approach to deal with functional and physical modularity in 

product family architectures. (iv) The presentation of practical guidance on the artifact’s 

design and evaluation. (v) The usage of a quantitative approach to measure the pragmatic 

validity and practical relevance. Finally, (vi) the MDM itself as the first method to design 

modular product families, developed under the design science paradigm. Regarding the 

limitations, the first one lies in the different procedures and time exposure adopted in 

evaluation cycles 2, 3 and 4, as described in the last section. The second has to do with the 

fact of not having tested the MDM in the context of high data availability. The third relates to 

the fact of only testing the MDM in made-up cases and not in real ones. Although we believe, 

these limitations did not affect the quality of results obtained, they are issues to overcome in 

future studies. In terms of future research directions, we identified opportunities in three fields 
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of study: product family design, modularity, and 𝐷𝑆𝑅. In product family design, an issue to 

investigate is how to design lucrative product families for multiple dynamic scenarios under 

uncertainty. Concerning modularity, the sufficiency of the current definition of modular 

architectures when the intensity of relationships is considered, and the potential limitation of 

modularity in dealing with aesthetics variety, configure two topics of study. Finally, regarding 

𝐷𝑆𝑅, the levels of artifacts’ evaluation which lead to satisfactory results in terms of pragmatic 

validity and practical relevance must be better understood. 
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6 ARTICLE 4 - MARKET-DRIVEN MODULARITY: AN INTEGRATED 

METHOD TO CONCEPTUALLY DESIGN MODULAR PRODUCT 

FAMILIES 4 

4 Article to be submitted to the Journal of Intelligent Manufacturing (JIM). 

Abstract: This paper introduces the Market-Driven Modularity (MDM), an 

integrated method to conceptually design modular product families that balance 

the fulfillment of market needs and the resulting profitability to achieve them. To 

do that MDM uses discrete choice modeling for quantifying the customers’ 

preferences, modularity as a mechanism to provide product variety, product 

family as a strategy to manage the trade-off between the variety and cost, and 

profit as a moderating variable to balance the level of accomplishment of 

customers’ needs. To provide a better understanding of the proposed method, this 

paper presents an illustrative application of the MDM within the development 

process of a family of collaborative robotic palletizers for multiple market 

segments. The results indicate, that even from a deterministic perspective and 

under a context of low data availability, the two MDM outcomes, a lucrative 

product family structure, and the decision on investment in the product family 

design, are reasonably stable. 

Keywords: modularity; product family design; choice modeling. 

6.1 Introduction 

Based on the belief the product variety can positively influence sales and profits, 

many companies have been attempting to accommodate the ever-increase diversity of 

customer preferences on its product offerings without sacrificing production efficiency 

(Zhu, Li and Feng, 2017). In industry and academy alike, this issue has been addressed 

by two complementary, but still not integrated, approaches: the product line planning 

and product family design (Miao et al., 2017). The product line planning consists of 

optimally selecting the group of products to be marketed to one specific market (Kahn, 
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2012), while the product family design consists of designing a set of products sharing 

common elements yet target different market segments (Simpson et al., 2014). 

Although numerous product line planning methods in management science and 

marketing literature deal with the selection problem using various objectives derived 

from profit, few of them explicitly address product design details not directly perceived 

by customers (Jiao, Simpson and Siddique, 2007). These approaches normally assume 

that any combination of product attributes can somehow be attained by design engineers 

post hoc (Michalek et al., 2011). In contrast, most existing product family design 

approaches are targeted at identifying an optimal commonality decision in order to 

minimize cost while meeting pre-specified performance tiers (Kumar, Chen and 

Simpson, 2009). As a consequence, they do not sufficiently examine broader business 

indicators such as demand and profit (Michalek et al., 2011). 

Addressing front-end issues in product family design is a complex activity 

(Colombo et al., 2019), which, in general, can be subdivided into four prevalent classes 

of design problems: (i) product family positioning, (ii) market-driven product family 

design, (iii) product family modeling, and (iv) product family configuration (Gauss, 

Lacerda and Miguel, 2020). The first two classes account for the marketing-related 

issues, which include customer involvement, product portfolio design, product family 

positioning, and transition or mapping from customer needs to functional requirements 

(Simpson et al., 2014). While the last two classes are grounded on engineering-related 

issues, which include the product family configuration, product architecture, design of 

families and platforms, leveraging commonality and modularity, and optimization of the 

family and platform design (Simpson et al., 2014). A recent study, concerning 72 

methods for designing module-based product families, has shown that 1.4% of methods 

address the four classes of design problems concurrently. Among those methods 
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(41.7%) considering marketing-related issues in its formulation, less than 7% derive the 

desired attributes in a product straight from the customers. Still from this study, it is 

seen that only 15.3% of methods account for enterprise-level indicators in product 

family configuration (Gauss, Lacerda and Miguel, 2020) (Article 1). Findings that 

comply with other research indications of lacking methods integrating marketing, 

engineering, and economic issues into product family design  (Jiao, Simpson and 

Siddique, 2007; Kumar, Chen and Simpson, 2009; Colombo et al., 2019). 

The problem is the marketing and engineering variables are often highly 

interdependent in product family design. Moreover, the coupled relationships between 

them imply that any change in one variable can potentially influence the outputs of the 

other(s), with both affecting the economic benefits of an enterprise (Chen, Hoyle and 

Wassenaar, 2013). Therefore, in the design of optimal or near-optimal product families, 

marketing, engineering, and economic requirements often cannot be pursued separately 

or even sequentially (Luo, 2011). 

In the light of these previous research indications, this paper introduces the 

Market-Driven Modularity (MDM), an integrated method to conceptually design 

modular product families that balance the fulfillment of market needs and the resulting 

profitability to achieve them. In this sense, the MDM aims to prevent the development 

of non-profitable product families deriving from the missing link between marketing 

and engineering domains. Moreover, it intends to overcome this problem by not only 

considering the interrelationships between customer preferences and engineering 

feasibility into product family design but also accounting for its respective influence on 

enterprise-level indicators such as demand, price, and profit. To do that MDM uses 

discrete choice modeling for quantifying the customers’ preferences (Chen, Hoyle and 

Wassenaar, 2013), modularity as a mechanism to provide product variety (Ulrich and 
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Tung, 1994), product family as a strategy to manage the trade-off between the variety 

and cost (Simpson, 2004), and profit as a moderating variable to balance the level of 

accomplishment of the customers’ needs (Kumar, Chen and Simpson, 2009). 

The main contributions of this research include the systematic integration of four 

classes of design problems prevalent in the literature into a single method to 

conceptually design lucrative product families. The introduction of Functional to 

Physical Decomposition, an approach to deal with functional and physical modularity in 

product family architectures, and the presentation of a heuristic to estimate the product’s 

variable costs at early design stages.  

The remainder of this paper is structured as follows. Section 6.2 synthesizes the 

related research on product family design. Section 6.3 describes the MDM external and 

internal environment. Section 6.4 presents an illustrative application of the MDM within 

the development process of a family of collaborative robotic palletizers. Section 6.5 

critically analyses the MDM outcomes. Finally, the last section provides the research 

contributions and limitations as well as its future directions. 

6.2 Related Work 

The product family design is an effective strategy to provide variety at a reduced 

cost (Simpson et al., 2014). Generally speaking, a product family refers to a set of 

products derived from a standard product platform to satisfy various market applications 

(Meyer and Lehnerd, 1997). Platforms, in turn, are intellectual and material assets 

shared across a family of products, to minimize manufacturing complexity (Erens and 

Verhulst, 1997). In this context, the prominent approach to product family design is 

through the development of module-based product families, wherein product family 

members are instantiated by mixing and matching functional modules from the platform 
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(Ulrich, 1995; Du, Jiao and Tseng, 2001). An alternative approach, considered as a 

subset of the former (Fujita and Yoshida, 2004), is through the development of a scale-

based product family, which consists of scaling one or more variables to change the 

platform specifications while common parameters remain constant (Simpson, 2004). 

The product family design is challenging for many aspects. It involves selecting 

business strategies, considering multiple marketing issues, engineering customer needs, 

studying customer behavior and choice-related issues, as well as carefully considering 

engineering aspects of design, such as manufacturability, technological aspects, and 

design support issues (Simpson et al., 2014). In general, these problems can be grouped 

into four prevalent classes: (i) Product family positioning, which aims at maximizing 

customers’ preferences with the lowest number of variants. (ii) Market-driven product 

family design, that deals with the transition of customers’ needs to functional 

requirements. (iii) Product family modeling, which comprehends the definition of 

modules and platforms. Finally, (iv) product family configuration, wherein the modules 

compounding the variants are optimally selected (Jiao, Simpson and Siddique, 2007). 

Over the years, active work in developing methods to design product families 

has been done (Borjesson and Hoelttae-Otto, 2014; Otto et al., 2016). Among those 

methods related to this study, the one encompassing four classes of design problems is 

the work of Jiang and Allada (2005). However, this method assumes the modules’ set 

already exists, being deeply sensitive to the ability of extant modules in accomplishing 

the customer desired attributes. Besides that, the product family configuration is used to 

configure one variant at a time instead of building an optimal or near-optimal product 

family structure. In like manner, other methods only entail the three first classes of 

design problems (Jiao and Tseng, 1999a; Asan, Polat and Serdar, 2004; Hsiao and Liu, 

2005; Kazemzadeh et al., 2009; Hsiao et al., 2013; Sahin-Sariisik et al., 2014; Ma and 
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Kim, 2016; Pakkanen, Juuti and Lehtonen, 2016). But the main limitation of them lies 

in the inability to optimally or near-optimally combine the designed modules into 

product family variants or even selecting the most adequate ones to compose the 

product family structure.  

There is another group of methods, encompassing the product family modeling, 

which focuses on modules identification (Thevenot et al., 2007; Arciniegas and Kim, 

2011; Agard and Bassetto, 2013; AlGeddawy and ElMaraghy, 2013; Li et al., 2013; 

Borjesson and Hoelttae-Otto, 2014; Aydin and Ulutas, 2016; Ma et al., 2016; Hou et al., 

2017, 2018; Miao et al., 2017). Within this group, a few methods, if any, perform the 

functional and physical decomposition concurrently. Besides that, these approaches 

occasionally measure the quality of the clustering solution, indicating in this way its 

open-loop nature. Still from this group, some approaches combine the product family 

positioning with product family modeling (ElMaraghy and AlGeddawy, 2012; Simpson 

et al., 2012; Fan et al., 2015; Miao et al., 2017), while others combine the market-

driven product family reasoning with the product family modeling (Dahmus, Gonzalez-

Zugasti and Otto, 2001; Zhang, Tor and Britton, 2006; Du, Jiao and Tseng, 2006; 

Krishnapillai and Zeid, 2006; Meng, Jiang and Huang, 2007; Park et al., 2008; Stone et 

al., 2008; Bonjour et al., 2009; Yan and Stewart, 2010; Emmatty and Sarmah, 2012; 

Yang, Yu and Jiang, 2014; Wei et al., 2015; Jung and Simpson, 2016; Cheng et al., 

2017; Bejlegaard et al., 2018; Wang et al., 2018; Gauss, Lacerda and Sellitto, 2019). In 

both, less than a quarter, derive the customer desired attributes straight from themselves. 

The last group of methods focuses on the product family configuration. More 

specifically in the process of mixing, matching, and scaling modules to generate product 

family variants (Tucker and Kim, 2008; Jiao, 2012; Pate, Patterson and German, 2012; 

Hanafy and Elmaraghy, 2015; Goswami, Daultani and Tiwari, 2017; Xiao et al., 2018). 
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In this group, the major part, solve the combinatorial and parametric problem through 

meta-heuristics and some use enterprise-level indicators to compound the objective 

function. Some methods also consider the product family design and configuration 

being performed together (Rai and Allada, 2003; Li, Huang and Newman, 2008; Li and 

Huang, 2009; Dong, Shao and Xiong, 2011; Chowdhury et al., 2016; Baylis, Zhang and 

McAdams, 2018; Colombo et al., 2019). However, they assume the modules’ set 

already exists, and use the configuration process to generate product family variants 

instead of building product family structures. Additionally, nor a threshold to evaluate if 

the variants instantiated satisfy the desired attributes in a product, neither feedbacks 

leading to new modules’ developments are found. Moreover, it is not explicit in these 

works, the product family configuration supporting or even playing the role of product 

line planning, an issue that has been traditionally dealt with in the management science 

and marketing literature (Jiao, Simpson and Siddique, 2007). 

In summary, there is a lack of integrated approaches modeling the customers’ 

preferences and using it to design and configure gainful product family structures, the 

gap this paper aims to overcome. 

6.3 Proposed Method: Market-Driven Modularity (MDM) 

The MDM consists of an integrated method to conceptually design market-

driven product families. Regarding its external environment (Dresch, Lacerda and 

Antunes Jr, 2015), the MDM is intended to be adopted in the early design stages of the 

product development process of small, midsize, and large companies that produce 

consumer (durables), intermediate, and capital goods. Besides that, the MDM has been 

developed to redesign the existing families from a modular point of view as well as to 

design new modules, new families, and new generations of families, in contexts from 
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low to high data availability as illustrates the Figure 37. 

 

Figure 37. External Environment of Usage of MDM. 

Its internal functional environment (Simon, 1996) is composed of 26 steps, 

arranged in 4 classes of design problems, that can be performed by, at least, 38 

techniques. The reasoning behind the method is to define the target market segments, 

model the customers’ choice probabilities for each of them, and then define a modular 

product family architecture, corresponding to all segments. With the product family 

architecture defined, the design parameter instances are generated and combined into a 

finite set of variants for each segment. Then, after setting the price, the demand is 

estimated, and the resulting profit of each variant is calculated. The most profitable 

variants have their gain aggregated into the product family profit, and the design 

parameter instances compounding them are selected to integrate the physical modules of 

the product family structure. If the product family profit matches the expected profit, the 

process is finished. Otherwise, the process should be restarted until the product family 

reaches the desired gain or until it is discarded. The two expected MDM outcomes are: 
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(i) the modular product family structure that better balances the fulfillment of market 

needs and the resulting profitability to achieve them, (ii) and the decision on investing 

or not in the product family design. Figure 38 presents an overview of the MDM 

proposition, while Figure 39 shows its internal functional environment in depth. 

 

Figure 38. Overview of the MDM proposition. 

From a more detailed perspective, the MDM method starts by converting the 

corporate strategy into objective measures for product family design. This process takes 

place at the first class of design problems, named here as Product Family Planning and 

Positioning (𝐶𝑝1). Within this class, at step 𝑆1.1, the potential market size (𝑀𝑘) and the 

expected profit (𝑉𝑒) are estimated. Besides that, the target market segments (𝑀𝑠), the 

technological trends and the product family leveraging strategy are also established. In 

the next step (𝑆1.2), the market segmentation is refined, and the resulting specifications 

serve as an input flow for identifying the customer desired attributes (𝐴) at stage 𝑆2.1, 

or, as feedback for improving the strategic product family planning at stage 𝑆1.1. 

The identification of customers’ desired attributes consists of the first step (𝑆2.1) 

of the second class of design problems entitled here as the Customers’ Choice Modeling 

(𝐶𝑝2). These attributes might derive from current or future needs and despite its nature, 
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Figure 39. Internal Functional Environment of MDM.
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they need to be converted into a language that engineers use to develop products. In 

some cases, the data gathered here (𝑆2.1) might be useful for refining the market 

segmentation at the previous step. The translation from customers’ to engineering 

attributes (𝐸) is performed at the stage 𝑆2.2, and the relationship (𝑅) between them is 

mapped in step 𝑆2.3, i.e. [𝐴]𝑚 = [𝑅]𝑚×𝑛[𝐸]𝑛. Those customer-related engineering 

attributes should go forward to step 𝑆2.4; otherwise, they should be discarded. In 

general, the engineering attributes might assume different levels within and across 

segments; for that reason, at stage 𝑆2.4, a set of competing alternatives (𝐽) for each 

segment is captured. Each competing alternative consists of a vector compound by 

engineering attribute values (𝐸𝑣) and price (𝑃), i.e. 𝐽𝑖⃗⃗ = {𝐸𝑣𝑖, 𝑃𝑖}. For those market pull 

product families, the competing alternatives usually derive from competitors or the 

company's existing products, while, for those technology push product families, the 

alternatives are deducted based on the product family planning and positioning. In both 

situations, the life-cycle of the competing alternative should be assessed before deciding 

if it is going to integrate the choice set. At this stage (𝑆2.4), new engineering attributes 

might emerge; in such cases, they serve as feedback for the step 𝑆2.2. The next step is to 

define the set of alternatives by which the customers will state their preferences within 

each segment. Sometimes, the number of alternatives might be particularly high, 

difficulting in this way, the preference statement. When it happens, the choice set (𝐶𝑠) 

must be reduced without losing the statistical significance in step 𝑆2.5, i.e. 𝐶𝑠 ={𝐽𝑖⃗⃗ ⊂ 𝐽𝑖⃗⃗ }. 

In situations where the data reduction is not required, the step 𝑆2.5 should be by-passed. 

With the choice set defined, the data on customers’ preferences are collected in stage 

𝑆2.6. In contexts of low data availability, the key customers, or experts in the field, are 

asked to compare the customer desired attributes against each other for each target 

market segment. In contexts of high data availability, in turn, the customers are 
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requested to pick an alternative from a choice set, emulating in this way, the real 

purchasing decisions within each segment. At stage 𝑆2.7, depending on the technique 

used, the engineering attributes’ coefficients (𝛽), or weights (𝑤), are estimated based 

on customers' stated/revealed preferences. Then, the utility (𝑊) and the choice 

probability (𝑃𝑟) of each alternative comprising the same target segment are modeled. If 

any deviation on market segmentation is found during the customers’ choice modeling, 

the process should restart until the marginal difference become insignificant. 

With the customer’s choice modeled, the next issue is to define the product 

family architecture, decompose it into functional/physical modules, and then generate 

the design parameter instances that can potentially compose the product family 

structure. This process is performed in the third class of problems named here as 

Product Family Modeling (𝐶𝑝3). Within this class, at stage 𝑆3.1, the process starts by 

formulating those logical entities with the ability to accomplish one or more engineering 

attributes. These logical entities are named here as design parameters (𝐷𝑃), and their 

formulation derives not only from the available technology and existing product 

features but also from future technology trends and analogy with other systems. Once 

defined, the design parameters are mapped to engineering attributes, giving rise to the 

product family architecture (𝑃𝐹𝐴) in stage 𝑆3.2, i.e. [𝐷𝑃]𝑚 = [𝑃𝐹𝐴]𝑚×𝑛[𝐸]𝑛. The 

product family architecture defined here comprises all target segments together, and it 

should be designed to meet the functional independence axiom (Suh, 1998). Then, at 

stage 𝑆3.3, the product family architecture is decomposed into functional modules (𝐹𝑀) 

and have its clustering solution evaluated at stage 𝑆3.4, i.e. 𝐹𝑀𝑖 = {𝐸𝑖 , 𝐷𝑃𝑖}. If the 

clustering solution accomplishes the desired level of functional modularity, i.e. 𝑀𝑓 ≥

0,5, the process should go forward. Otherwise, the clustering refinement should be 

performed until it reaches the expected value or until an integral architecture is found, 
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i.e. 𝑀𝑓 < 0,5. In the last situation , the process should be finished as indicated by Figure 

39. With the functional modules defined, the next issue is to specify the engineering 

attributes values (𝐸𝑣) resulting from different physical characteristics that a design 

parameter might assume. This task of defining the design parameter instances (𝐷𝑃𝐼) is 

performed at the stage 𝑆3.5, i.e. 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖 }. Couple with that arises the trade-off 

between the engineering attribute levels and the costs to achieve it. For that reason, the 

variable cost (𝐶𝑣) of each design parameter instance is estimated at stage 𝑆3.6, i.e. 

𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖, 𝐶𝑣 }. The variable cost is assumed here to overcome the limitations of 

traditional cost accountability in dealing with product mix-related decisions (Cox and 

Schleier, 2010). After that, to identify the physical interactions within and across 

functional modules, rough geometric layouts are created in step 𝑆3.7. In this step, just as 

incompatible design parameter instances may be discarded, new design parameters 

might emerge giving rise to feedback from here (𝑆3.7) to the stage 𝑆3.1. The physical 

interactions resulting from this step, serve as an input flow for mapping the structural 

dependencies among design parameters in step 𝑆3.8. Then, at stage 𝑆3.9, the functional 

decomposition is transferred to the physical decomposition, and the relationship 

between these two modularity indices is evaluated at stage 𝑆3.10. The reasoning here is 

that the physical modularity must not prevent the functional modularity as suggests 

Figure 40. If a modular architecture unconstrained by physical interactions is reached, 

i.e. (𝑀𝐼𝑝 ≥ 𝑀𝐼𝑓 | 𝑀𝐼𝑓 ≥ 0,5), the process goes forward. Otherwise, the iterative 

refinement on physical modularity should be performed until it reaches the desired 

value. Finally, the design rules for product family configuration are defined at the stage 

𝑆3.11. It is also seen that when setting the configuration rules, modifications to the 

product family architecture may arise as indicated by the feedback to step 𝑆3.2. 
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Figure 40. Relationship between functional (𝑀𝑓) and physical (𝑀𝑝) modularity indices. 

Back to the first class (𝐶𝑝1), at stage 𝑆1.3, the issue is to aggregate the 

customer’s choice probability, the design rules, the set of design parameter instances, 

and the enterprise-level indicators (demand, price, and profit) into a single model for 

combining, selecting and parameterizing the design parameter instance to compound the 

modular product family structure. This configuration process takes place in the fourth 

class of design problems, named here as Product Family Configuration (𝐶𝑝4). At this 

class, the process starts at the stage 𝑆4.1, where the design parameter instances are 

combined into family variants for each target market segment. If some design parameter 

instances contain scalable engineering attributes, its values are adjusted in the step 𝑆4.2. 

With the product variant configured and parametrized, the price (𝑃) is set at stage 𝑆4.3, 

and its demand (𝑄) and partial profit (𝑉𝑀𝑠) are calculated in the next step. The 𝑆4.4 not 

only calculates the partial profit of each variant in its respective segment but also 

aggregates it into the product family profit (𝑉). The steps from 𝑆4.1 to 𝑆4.4 of this fourth 

class are performed repeatedly until it reaches the optimal or near-optimal profitability. 

At the end of this process, the non-profitable variants are discarded, and the resulting 

product family profitability is compared to the expected gain (𝑉𝑒). If it is considered 
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satisfactory, i.e. 𝑉 ≥ 𝑉𝑒, those most profitable variants are computed, and the design 

parameter instances compounding them are selected to integrate physical modules of the 

product family structure at the stage 𝑆4.5. Otherwise, the process should be restarted 

until the product family reaches the desired value or until it is discarded. The output of 

the proposed method is the modular product family structure that better balance the 

trade-off between the fulfillment of market needs and the resulting profitability to meet 

them. Therefore, this is the structure that should be developed in the subsequent design 

stages of the product development process, not covered in this research. 

So far, it has been presented the MDM steps and how they have been organized. 

However, depending on the company’s maturity and the context of data availability, 

different techniques might be adopted to execute each step of the method. We mean by 

low data availability, those scenarios where the data are scarce or the cost to obtain it 

are particularly elevated. The high data availability consists of the opposite. Table 33 

complements the MDM functional structure by suggesting the techniques to be used in 

each key activity compounding the method’s steps. The reasoning behind Table 33 is 

that those techniques placed at the left-hand side of the column Techniques are more 

suitable for contexts of low data availability. While those positioned at the right-hand 

side are more suitable for contexts of high data availability. Those techniques placed in 

the middle, in turn, can be used for both scenarios. It does not mean that some 

techniques cannot be used in one or another scenario, or that new techniques cannot be 

adopted by the method. On the contrary, the proposition here is to guide practitioners 

towards MDM usage. Although the techniques configure an essential part of the MDM 

method, only some of them will be briefly covered in the next section to not make this 

paper too extensive, and those who not, can be accessed by its respective references 

indicated in Table 33. 



164 

 

Table 33. MDM suggested techniques 

Classes of design problems (𝐶𝑝𝑖) Steps of the method (𝑆𝑖)  Key activities (low data availability)                                        Techniques                                        (high data availability) 

Cp1 - Product family  

planning and positioning 

S1.1 - Strategically plan the 

product family (𝑃𝐹) 
Estimate the potential market size (𝑀𝑘) and the 

expected profit (𝑉𝑒). 
Delphi (Dalkey, 1969), 

Three-point estimate (Premachandra, 2001), 
Domain knowledge (Jiao and Tseng, 1999a). 

Survey (Forza, 2002), 

Descriptive statistics 
(Montgomery and Runger, 2011). 

Define the product family positioning and its 

leveraging strategy. 

Market segmentation grid (Meyer and Lehnerd, 1997). 

Define the technological trends for product family 

development. 

Technology roadmap (Phaal and Muller, 2009). 

Define which type of project must be developed. Aggregate project plan (Wheelwright and Clark, 1992). 

S1.2 - Segment the market Refine the segmentation defined apriori in terms of 

the number of segments, competing alternatives, 
share, price and performance tiers. 

Delphi (Dalkey, 1969), 

Market segmentation grid 
(Meyer and Lehnerd, 1997). 

Latent class analysis 

 (Chen, Hoyle and Wassenaar, 2013). 

Synthesize the corporate strategy into objective 

measures for product family development. 

Requirements list (Pahl et al., 2007). 

S1.3 - Build the 𝑃𝐹 configuration 

model 

 

Aggregate the customer’s choice probability, the 
design rules, the set of design parameter instances, 

and the enterprise-level indicators into a single 

model for selecting and parameterizing the physical 

modules to compound the 𝑃𝐹 structure. 

Mathematical modeling (Hilier and Lieberman, 2015). 

Cp2 - Customers’ choice 

modeling 

S2.1 - Identify customer-desired 

attributes (𝐴) 
Identify features and financial attributes that 

customers (will) consider when purchasing the 
product. 

Qualitative interviews (Malhotra and Birks, 2007); 

Direct observation (Kazemzadeh et al., 2009); 
Focus group (Malhotra and Birks, 2007). 

Survey (Forza, 2002), 

Descriptive statistics 
 (Montgomery and Runger, 2011). 

Content analysis (Bardin, 1993). 

S2.2 - Formulate the engineering 

attributes (𝐸) 
 

Transform the customer-desired attributes into 

quantifiable product properties to be used in the 

engineering product development process. 

Analysis of existing technical systems (Pahl et al., 2007). 
Benchmarking, Reverse engineering (Thevenot and Simpson, 2007). 

S2.3 - Map the dependencies 

between 𝐴 and 𝐸 

 

Map the qualitative customer-desired attributes into 

quantitative engineering attributes to support the 

further construction of the choice models. 

Design matrix (Suh, 2001). 

 

S2.4 - Collect the engineering 

attributes levels (𝐸𝑣) for each 

𝑀𝑠𝑖 

Collect different 𝐸 values (𝐸𝑣𝑖), and price (𝑃𝑖), 
such that a set of 𝐸𝑣𝑖 and 𝑃𝑖 belong to a competing 

alternative (𝐽𝑖), i.e. 𝐽𝑖⃗⃗ = {𝐸𝑣𝑖 , 𝑃𝑖}. 

Analysis of existing technical systems (Pahl et al., 2007). 

Benchmarking, Reverse engineering (Thevenot and Simpson, 2007). 

S2.5 - Construct the choice set 
(𝐶𝑠) for each 𝑀𝑠𝑖 

Reduce the number of choice alternatives to be 

evaluated without losing the statistical significance. 

 Fractional factorial design 

(Montgomery and Runger, 2011). 

S2.6 - Collect data on customers’ 
preferences 

Collect data on customers’ preferences by asking 
them to compare the engineering attributes of a 

product against each other, or to pick an alternative 

from a choice set. 

Qualitative interviews (Malhotra and Birks, 2007); 
Focus group (Malhotra and Birks, 2007). 

 

Survey (Forza, 2002). 

 
S2.7 - Build the discrete choice 

model (𝑃𝑟𝑖) for each 𝑀𝑠𝑖 

 

Estimate the weights/coefficients of the engineering 
attributes, and then calculate the utility function for 

all alternative of each target market segment. 

Analytic hierarchy process 
(Alonso and Lamata, 2006; Saaty, 2008). 

 

Nested logit, Maximum likelihood estimation 
(Chen, Hoyle and Wassenaar, 2013). 

 
Estimate the choice probability of each alternative 

within its market segment. 

Analytic hierarchy process (Saaty, 2008); 

Data scaling (Chen, Hoyle and Wassenaar, 2013). 

Nested Logit 

(Chen, Hoyle and Wassenaar, 2013). 

(continued) 
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Table 33. (Continued) 

Classes of design problems (𝐶𝑝𝑖) Steps of the method (𝑆𝑖)  Key activities (low data availability)                                        Techniques                                        (high data availability) 

Cp3 - Product family modeling S3.1 - Formulate the design 

parameters (𝐷𝑃) 
Define the logical entity with the ability to fulfill 

one or more 𝐸𝑖.  

Domain knowledge (Jiao and Tseng, 1999a), 
Classification scheme (Pahl et al., 2007). 

S3.2 - Map the product family 

architecture (𝑃𝐹𝐴) 
Map the logical coupling between the 𝐸𝑖 and 𝐷𝑃𝑖, 

i.e. [𝐸]𝑚 = [𝑃𝐹𝐴]𝑚×𝑛[𝐷𝑃]𝑛. 

Design matrix (Suh, 2001). 

S3.3 - Decompose 𝑃𝐹𝐴 into 

functional modules (𝐹𝑀) 
Decompose the 𝑃𝐹𝐴 into functional modules (𝐹𝑀), 
i.e. 𝐹𝑀𝑖 = {𝐸𝑖 , 𝐷𝑃𝑖}. 

Rank order clustering (King, 1980), 

Cluster identification algorithm (Kusiak and Chow, 1987). 

S3.4 - Evaluate the  

clustering solution 
 

Capture the strength and density of connections 

within each independent 𝐹𝑀 and between different 

𝐹𝑀𝑠, i.e. 𝑀𝐼𝑓 ≥ 0,5. 

Modularity index (Jung and Simpson, 2017). 

S3.5 - Define 𝐷𝑃 instances (𝐷𝑃𝐼) 
 

Define different instances (𝐷𝑃𝐼) for a particular 𝐷𝑃 

along with its respective 𝐸𝑣 i.e. 𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = {𝐸𝑣𝑖  } 

Classification scheme, Analysis of existing technical systems (Pahl et al., 2007). 

Benchmarking, Reverse engineering (Thevenot and Simpson, 2007). 

S3.6 - Estimate the 𝐷𝑃𝐼  
variable cost (𝐶𝑣) 
 

Estimate the variable cost (𝐶𝑣) for each 𝐷𝑃𝐼 based 

on its cost-related design features (𝐶𝐷𝐹). 
Pragmatic approach to product costing (Jiao and Tseng, 1999b), 

Request for quotation (Gümüş, 2014), 

Three-point estimate (Premachandra, 2001). 

S3.7 - Create rough  
geometric layouts 

Identify the physical interactions between 𝐷𝑃𝑠. 

 

Sketching e rendering (Koos Eissen et al., 2007). 

S3.8 - Map the structural 

dependencies among components 

Map the physical coupling between 𝐷𝑃𝑠, 

i.e. [𝐷𝑃]𝑚 = [𝐷𝑆𝑀]𝑚×𝑛[𝐷𝑃]𝑛. 

Design structure matrix (Browning, 2001). 

S3.9 - Decompose the system into 

physical modules (𝑀) 
Decompose the 𝐷𝑆𝑀 into physical modules (𝑀), 
i.e. 𝑀𝑖 = {𝐷𝑃𝑖}. 

Functional to physical decomposition (Authors). 

 

S3.10 - Compare 𝑀𝑖  with 𝐹𝑀𝑖 Compare if 𝑀𝐼𝑝 ≥ 𝑀𝐼𝑓. Modularity index (Jung and Simpson, 2017). 

S3.11 - Establish the design rules 

for 𝑃𝐹 configuration 

Define design rules for product family 

configuration. 

Generic bill-of-material (Li, Huang and Newman, 2008), 

Mathematical modeling (Hilier and Lieberman, 2015). 

Cp4 – Product Family 

Configuration 
S4.1 - Combine 𝐷𝑃𝐼𝑖 to generate 

the 𝑃𝐹 variants (𝑃𝐹𝑣) for each 

𝑀𝑠𝑖 

 

Combine the design parameter instances to generate 

𝑃𝐹 variants for each target market segment. 

Design heuristic - Substitute way of achieving 

functions  (Daly et al., 2012). 

 

Genetic algorithm (Meng, Jiang and Huang, 2007). 

 

S4.2 - Parametrize the scalable 𝐸𝑖 

 

Set the values for the scalable engineering 
attributes. 

Design heuristic - Scale up or down 
(Daly et al., 2012).  

Genetic algorithm (Meng, Jiang and Huang, 2007). 
 

S4.3 - Set the price (𝑃) 
for each 𝑃𝐹𝑣 variant 

Set the price for each product family variant. 

 

Trial-and-error 

(Rui, Cuervo-Cazurra and Annique Un, 2016). 
 

Genetic algorithm (Meng, Jiang and Huang, 2007). 

 

S4.4 - Calculate the partial profit 
(𝑉𝑀𝑠) for each 𝑀𝑠𝑖 and aggregate 

it into the 𝑃𝐹 profit (𝑉) 

Calculate the partial profit for each target market 

segment, and then aggregate it into a measure that 

represents the product family profitability. 

Mathematical modeling 

(Hilier and Lieberman, 2015). 

S4.5 - Build the 𝑃𝐹 structure 

 

Build the product family structure with physical 
modules compound by design parameter instances 

retrieved from the most profitable variants of each 

segment. 

Generic bill-of-material (Li, Huang and Newman, 2008). 
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6.4 Illustrative Example 

In order to provide a better understanding of the proposed method, this section 

presents an illustrative application of the MDM within the product development process 

of a midsize company that produces capital goods. The MDM is employed here to 

conceptually design a new product family generation in a scenario of low data 

availability. The context unit is the Brazilian Palletizer Market, and the unit of analysis 

is a Family of Collaborative Robotic Palletizers. In this sense, palletizing refers to the 

operation of stacking products onto a pallet for storage or direct distribution, while a 

palletizer consists of equipment that automates this operation (Popple, 2009). The 

MDM application has been performed by the corresponding author of this research 

supported by two experts in the filed. The data used in the design process came from 

palletizing projects quoted by two Brazilian manufacturers during the last five years, 

and from the website of three leading competitors in this market. 

The palletizer market usually classifies the palletizers by types which include 

floor level palletizers, high-level palletizers, and robotic palletizers (Gauss, Lacerda and 

Sellitto, 2019). For long production runs with the same stock-keeping units (𝑆𝐾𝑈) and 

same-size packages, a conventional palletizer is preferred. However, robotic palletizers 

are more flexible and reliable for palletizing multiple 𝑆𝐾𝑈 pallets (Popple, 2009). In the 

current fast-paced-economy, retailers and distribution centers are shipping fewer pallets 

with a single 𝑆𝐾𝑈 and generating more mixed-case pallets with multiple 𝑆𝐾𝑈𝑠. Thus, 

robotic palletizers are expected to be used more than conventional ones in the near 

future (More, 2019). Following this direction, combined with the belief in advanced 

robotics as a technology enabler for the future of manufacturing (Ghobakhloo, 2018), 

the MDM started by defining the collaborative robotics as the technological trend for 
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Figure 41. Technology roadmap. 
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product family development in step 𝑆1.1. This process was assisted by the Roadmap 

presented in Figure 41, which depicts the relationship between technology, product, and 

market layers (Phaal and Muller, 2009). The technology layer shows the transition from 

traditional to collaborative robotics along with its expected evolution in terms of 

payload capacity. The product layer, in turn, indicates how this technology progress 

might support the development of intermediate goods to integrate future manufacturing 

environments. Finally, the market layer suggests future opportunities in the Palletizer 

Market resulting from the two bottom layers. Under these circumstances, two potential 

product families have been identified to accomplish future needs in this market as 

indicated by Figure 41 and Figure 42. The first one (𝑃𝐹1) consists of a family of 

autonomous mobile palletizers, while the second one (𝑃𝐹2) is made of a family of 

autonomous aerial palletizers. Given the fact the 𝑃𝐹2 can be potentially developed 

through the 𝑃𝐹1 platform, this paper will only cover the conceptual design of the 

product family 𝑃𝐹1. 

 

Figure 42. Aggregate project plan (Wheelwright and Clark, 1992). 

Another important issue in this first step (𝑆1.1) is to estimate the potential 

market size (𝑀𝑘). In this illustrative example, such activity has been supported by the 

available information on the Global Palletizer Market, combined with experts’ domain 
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knowledge (Jiao and Tseng, 1999a). According to More (2019), the Global Palletizer 

Market is projected to reach a value of USD 2.9 billion by 2023. In this context, 

conforming to the experts’ domain knowledge, the Brazilian market historically 

accounts for not more than 4% of the global demand, and the average price per 

palletizing position in this market is about USD 150,000.00. Taking into account these 

values, and assuming no substantial growth in the Brazilian economy to the next years, 

the market size was estimated to be 773 palletizing positions a year by 2027, i.e, 𝑀𝑘 ≈

[(2.9𝑥109𝑥0.04) (150𝑥103)⁄ ] ≈ 773. 

Couple with that arises the need to define the target market segments as well as 

the product family positioning and its respective leveraging strategy. To do that, the 

MDM adopts the Market Segmentation Grid (𝑀𝑆𝐺) (Meyer and Lehnerd, 1997), but 

expands its boundaries to a multidimensional perspective as shown in Figure 43. The 

three-axis compounding the 𝑀𝑆𝐺 represents the key customers’ desired attributes along 

with its respective performance tiers. The markers distributed along the 𝑀𝑆𝐺 area 

consists of a sample of palletizing projects quoted by two Brazilian manufactures in past 

years. Besides its grid position, the projects can be classified according to its market, 

and package type. In Figure 43(a), those bars at the left, and the upper left position 

represent the competing alternatives in this market, while its length indicates how they 

span the corresponding axis. In Figure 43(b) the areas filled in red, green and blue 

indicate the boundaries of the product family scope, and the projects dropping within 

these areas indirectly show the target market segments. Similarly, those bars at the left, 

and the upper left position of Figure 43(b), indicate the working principle adopted by 

the product family and the leveraging strategy to span its corresponding axis. In this 

illustrative example, the working principle adopted was the collaborative robots 

(cobots), and the leveraging strategy for palletizing multiple 𝑆𝐾𝑈𝑠 concurrently at 
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different production rates was to use some cobots in parallel. For palletizing different 

package weights, in turn, the strategy was to scale up the cobots payload capacity. 

 

Figure 43. (a) Market segments; (b) Product family leveraging strategy. 
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Still from the step 𝑆1.1, it is required to establish the product family expected 

profit (𝑉𝑒). In other words, the company needs to define which is the profit threshold 

that would make itself to invest or not in the product family design. It is important to 

clarify that the MDM does not aim to evaluate the economic feasibility of a project, 

instead, it intends to conceptually build a product family structure by balancing the 

fulfillment of market needs and its resulting profitability, as well as providing its 

economic potential to the decision-maker. In this sense, for a typical mid-size machine 

manufacturer, the experts’ in the field estimate that a 𝑉𝑒 ≥ 2𝑥106 [𝑈𝑆𝐷 𝑦𝑒𝑎𝑟⁄ ] would 

justify the investment in the product family 𝑃𝐹1. 

With the market size estimated and the product family positioning defined, the 

next step (𝑆1.2) is to understand the potential contribution of each target segment/niche 

for achieving the expected profit. In this illustrative example, for clarifying the 

marketing intentions, the process started by redefining the segmentation from a “sector” 

perspective to a “package” perspective. In this sense, 3 segments concerning the 

package type, and 3 performance tiers have been established, giving rise to 9 market 

niches as shown in Figure 44. The areas filled in red, green and blue indicate the 

clusters encompassing the 6 target market niches to be considered in the product family 

design. These clusters have been defined qualitatively in Figure 43(b) based on the 

cobots limitations in terms of payload capacity and production rate. The segments’ and 

performance tiers’ proportions, in turn, have been specified based on the projects quoted 

by two Brazilian manufacturers and assuming no major changes in it for the next seven 

years according to experts’ opinion. Multiplying the proportions of horizontal axes by 

the vertical axes it is possible to estimate the share of each market niche (𝑆𝑀𝑠), i.e. 

𝑆𝑀𝑠1.1 = 0.5 𝑥 0.2 = 0.1. After converting the corporate strategy into objective 

measures for product family design, the information generated at this first class of 
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design problems (𝐶𝑝1) is suggested to be compiled into a Requirements’ List (Pahl et 

al., 2007). 

 

Figure 44. Market segmentation grid (Meyer and Lehnerd, 1997). 

The next issue is to model the customer choice probability for each market niche 

previously defined. This process takes place in the second class of design problems 

(𝐶𝑝2), and starts by identifying the customer desired attributes (𝐴) in step 𝑆2.1. In the 

present example, 22 customers desired attributes emerged through the Content Analysis 

(Bardin, 1993) of 24 project quotations performed by the Brazilian manufacturers which 

contributed to this research. After identified, these customer desired attributes were 

checked against the possibility to still exist in seven years from now. With that respect, 

there was a consensus between the experts that despite its relative importance might 

change, all of them would still represent the customers’ needs in the near future. Finally, 

each attribute has been associated with its respective market niche as shown in Table 

34. 



 

173 

 

Table 34. Product family attributes deployment. 

    Engineering attributes (Ei)           Mkt. segments (Msi) 
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Id. Customer desired attributes (Ai) E1 E2 E3 E4 E5 E6 ... E36 P Ms1.1 ... Ms2.3 

A1 Production speed 1         1 … 1 

A2 
Accumulate packages before 

entering the palletizer 
 1        1 … 1 

A3 Package's barcode reading   1        … 1 
A4 Palletize different sizes of packages    1 1 1    1 … 1 

... ...       ...   ... … ... 

A21 Safety: ISO 13849-1        1  1 … 1 
A22 Price         1 1 … 1 

Id. Regular slotted case / Low-end / ≤ 15kgf (Ms1.1)  ...      

J1.1-1 Collaborative robotic palletizer A1 360.0 2.0  100.0 600.0 500.0 ... 3 57,500.00 1   

J1.1-2 Robot pick and place palletizer B1 600.0 1.5  127.0 609.6 457.2 ... 3 125,000.00 1   

J1.1-3 Low infeed palletizer C1 600.0 3.0  150.0 600.0 450.0 ... 3 157,500.00 1   

J1.1-4 Robotic palletizer D1 240.0 2.0  100.0 600.0 450.0 ... 3 50,833.33 1   

J1.1-5 Robotic palletizer D2 450.0 2.0  100.0 600.0 450.0 ... 3 95,937.50 1   

  Relative weights (w) 0.084 0.021  0.047 0.047 0.054 ... 0.037 0.200    

... ... ... ... ... ... ... ... ... ... ...  …  

Id. Bundle wrapping / Bag / Mid-end / ≤ 30kgf (Ms2.3) ...      

J2.3-1 Hybrid robotic palletizer B3 900.0 2.0 0.0 152.4 736.6 381.0 ... 3 260,000.00   1 

J2.3-2 Low infeed palletizer C2 900.0 3.0 0.0 150.0 600.0 450.0 ... 3 224,500.00   1 
J2.3-3 Robotic palletizer D4 720.0 2.0 0.0 100.0 600.0 300.0 ... 3 254,750.00   1 

  Relative weights (w) 0.090 0.026 0.010 0.040 0.040 0.040 ... 0.037 0.175    

Right after identifying the customer desired attributes, they need to be translated 

into quantifiable product properties to be used in the subsequent design stages. In 

MDM, these properties are called as engineering attributes (𝐸), and its formulation 

happens in step 𝑆2.2. In this illustrative example, this process has been performed 

through the Analysis of Existing Technical Systems (Pahl et al., 2007), combined with 

Benchmarking (Thevenot and Simpson, 2007). The data source was the product 

portfolio of five leading competitors in this market, which includes the two 

manufactures that cooperated with this research. As a result, 36 engineering attributes 

have been formulated. Then, at the stage 𝑆2.3, the customer desired attributes (𝐴)  have 

been mapped to engineering attributes (𝐸) by means of a design matrix (Suh, 2001), i.e. 

[𝐴]𝑚 = [𝑅]𝑚×𝑛[𝐸]𝑛. The design matrix [𝑅]𝑚×𝑛 includes integer as well as “blank” 
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entries, where nonblank entry 𝑎𝑖𝑗 ∈ [𝑅]𝑚×𝑛 indicates a relationship between 𝐴 and 𝐸 

according to shows Table 34. This table also indicates the desired direction of each 

engineering attribute, resembling the House of  Quality (Chan and Wu, 2002). 

In general, the engineering attributes assume different levels within and across 

segments. For that reason, at stage 𝑆2.4, a set of competing alternatives (𝐽) for each 

segment is captured to identify its respective engineering attribute values (𝐸𝑣) and price 

(𝑃). This task adopted the same techniques and data source used in the step 𝑆2.2, and the 

result was the identification of 10 competing alternatives distributed into 6 market 

niches, as illustrated in Table 34. In some situations, depending on the market and the 

product, accessing the price of competing alternatives might be particularly difficult. In 

such cases, we suggest estimating price thought the multiplication between a typical 

markup adopted in the market and the product’s variable cost (𝐶𝑣), i.e. 𝑃𝑖 =

𝑚𝑎𝑟𝑘𝑢𝑝. 𝐶𝑣𝑖, an issue that will be covered later in this section. Compared with price, 

the engineering attribute levels are a bit easier to access, but they still have their 

particularities. One example of it, are those competing alternatives integrating the 

market niche 𝑀𝑠1.1 in Table 34. They present blank entries in column 𝐸3, which means 

that the engineering attribute 𝐸3 is related to a customer desired attribute (𝐴) that does 

not tackle this market niche, as also indicates Figure 45. Another example is those 

alternatives integrating the market niche 𝑀𝑠2.3. They present strikethrough values in 

column 𝐸3 of Table 34, which means that this engineering attribute values have not 

been found during the searching process. That was not the case here, but after capturing 

the competing alternatives, new engineering attributes might arise, in these situations, 

the process should go back to the two previous steps. 

Since the step 𝑆2.5 is not required here, it has been bypassed straight to the stage 

𝑆2.6, where the objective is collecting the data on customer preferences. This example 
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simulates the design process of a new product family generation occurring in a context 

of low data availability. Therefore, the relative importance (𝑤) of each engineering 

attribute has been deductively defined in conjunction with experts through the use of the 

Analytic Hierarchy Process (𝐴𝐻𝑃) (Saaty, 2008). This procedure started by structuring 

a three-level decision hierarchy for each market niche as illustrated in Figure 45. Then, 

a set of pairwise comparison matrices has been done by each participant, considering 

the importance of each constituent in seven years from now. Afterward, the geometric 

mean has been used to obtain the group judgment for each entry of the comparison 

matrices, as presented in Table 35 (Ossadnik, Schinke and Kaspar, 2016). Each element 

in an upper hierarchy level (𝐴𝑖) was then used to compare the elements in the level 

immediately below (𝐸𝑖) with respect to it. After that, the matrices acceptance has been 

evaluated according to the consistency system proposed by Alonso and Lamata (2006) 

due to its flexibility in dealing with matrices with more than 15 criteria. In all cases, the 

consistency ratio (𝐶𝑅) appeared to be lower than 0,1, i.e. 𝐶𝑅 < 0.1, indicating an 

acceptable consistency. 

Table 35. Pairwise comparison of customer desired attributes in market niche 𝑀𝑆1.1. 

Reg. slotted case / Low-end / ≤ 15kgf (MS1.1)    A1 A2 A4 A5 A6 A7 A8 A9 A10 A13 A14 A17 A18 A19 A20 A21 A22 

Production speed A1 1.0 5.0 1.0 1.0 1.0 1.0 7.0 5.0 0.3 5.0 5.0 5.0 5.0 5.0 3.0 3.0 0.3 
Accumulate pkgs. before entering the plt. A2  1.0 0.1 0.1 0.2 0.1 3.0 3.0 0.1 0.3 0.3 0.3 3.0 3.0 1.0 0.3 0.1 

Palletize different sizes of packages A4   1.0 3.0 1.0 0.3 7.0 7.0 1.0 5.0 5.0 3.0 9.0 9.0 5.0 3.0 0.3 

Palletize different weights of packages A5    1.0 1.0 0.2 3.0 3.0 0.2 3.0 3.0 1.0 3.0 3.0 3.0 1.0 0.3 
Palletize different sizes of pallets A6     1.0 0.2 3.0 1.0 0.3 1.0 1.0 0.3 1.0 1.0 0.3 0.3 0.1 

Palletize different load patterns A7      1.0 7.0 5.0 1.0 5.0 5.0 3.0 5.0 5.0 5.0 5.0 0.2 

Guarantee the load alignment A8       1.0 0.3 0.1 0.3 0.3 0.3 3.0 0.3 0.2 0.3 0.1 

Orientate the pkg's label to external load faces A9        1.0 0.1 0.3 0.3 0.3 1.0 0.3 0.3 0.3 0.1 

Palletize multiple packages concurrently A10         1.0 5.0 5.0 5.0 7.0 7.0 5.0 5.0 0.3 

Place tie/cap sheet between layers A13          1.0 0.2 3.0 5.0 5.0 3.0 3.0 0.1 
Wrap the pallet load with stretched film A14           1.0 3.0 5.0 5.0 3.0 3.0 0.1 

Easiness to configure new patterns A17            1.0 5.0 5.0 1.0 1.0 0.1 

Plug and play installation A18             1.0 1.0 0.2 0.3 0.1 
Reduced footprint A19              1.0 0.3 0.2 0.1 

Reduced downtime A20               1.0 1.0 0.1 

Safety: ISO 13849-1 A21                1.0 0.2 
Price A22                 1.0 

Still through the 𝐴𝐻𝑃, at stage 𝑆2.7, the relative weight (𝑤) of each engineering 

attribute (𝐸) was calculated for its respective market niche, as indicates those lines in 

italic of Table 34. With the weights defined, the next issue was to model the utility (𝑊) 
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Figure 45. Decision hierarchy of market niche 𝑀𝑆1.1.
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and the choice probability (𝑃𝑟) of each competing alternative (𝐽) comprising the same 

market niche. Assuming these variables can be expressed as a linear combination of 

engineering attributes values (𝐸𝑣), 𝑊 and 𝑃𝑟 follow the form of Equation 10. 

𝑊𝑖𝑗 = 𝑃𝑟𝑖𝑗 = ∑𝑤𝑖. (
𝐸𝑣𝑖

∑ 𝐸𝑣𝑗
𝑘
𝑗=1

)

𝑛

𝑖=1

 10 

Regarding the Equation 10, some important considerations must be clarified. First, the 

model exhibits the independence of irrelevant alternatives (𝐼𝐼𝐴) property, which leads 

to proportional substitution patterns among the alternatives considered (Chen, Hoyle 

and Wassenaar, 2013). Second, the equality between 𝑊 and 𝑃𝑟𝑛 is true in cases where 

the relative weights (𝑤) derive from the 𝐴𝐻𝑃. Third, the utility ranges from 0 to 1, i.e. 

(0 ≤ 𝑊 ≤ 1), as well as the choice probability. Fourth, the engineering attributes (𝐸) 

might have different desired directions (+ 𝑜𝑟 −) as indicated in Table 34. Thus, when 

𝐸𝑖 assumes a negative direction (−), i.e. “the lower the better”, the inverse of its 

respective engineering attribute value (1 𝐸𝑣𝑖⁄ ) should be considered in Equation 1. 

Finally, there are some situations where the engineering attribute values are not found, 

as indicate those strikethrough values in Table 34. In such cases, these 𝐸𝑣 should 

assume the same values of the product variant resulting from the configuration process 

to be presented later in the fourth class of design problem (𝐶𝑝4). 

 Given all these points, and with no deviation found from the segmentation 

defined in the step 𝑆1.2, the next issue is to define the product family architecture, 

decompose it into functional/physical modules, and then generate the design parameter 

instances that can potentially compose the product family structure. This process takes 

place in the third class of problems (𝐶𝑝3), and starts by formulating the design 

parameters (𝐷𝑃) at stage 𝑆3.1. In this example, the Classification Scheme (Pahl et al., 

2007) has been used to help the abductive process of design parameters formulation, as 
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illustrated in Table 36. The task starts by searching and cataloging those working 

principles (𝑊𝑃) capable of accomplishing one or more engineering attributes (𝐸). 

Then, the logical entities underlying those working principles sharing the same physical 

effect are inductively derived. For example, in Table 36, the working principles 𝑊𝑃12, 

𝑊𝑃13, and 𝑊𝑃14 differ in morphological aspects, however, they share the same 

physical effect of gripping packages. In the context of robotic palletizers, the logical 

entity that executes that function is known as end effector, thus, it has been defined as a 

design parameter (𝐷𝑃5). Following this pattern, and supported by the experts’ domain 

knowledge, 13 design parameters have been derived from the 31 working principles 

cataloged in Table 36. 

Table 36. Classification scheme. 

    Working principles (WPi) 

  

  

 ... 

   

... 

 
Dpi Design parameters (DP) WP1 ... WP12 WP13 WP14 ... WP31 

DP1 Packages' accumulation conveyor 1 ...       ...   
DP2 Packages' singulation conveyor   ...       ...   

DP3 Packages' barcode reader   ...       ...   

DP4 Articulated robotic arm   ...       ...   
DP5 End effector   ... 1 1 1 ...   

DP6 Pallet's dispenser   ...       ...   

DP7 Pallet's infeed conveyor   ...       ...   
DP8 Pallet's shuttle car   ...       ...   

DP9 Full load discharge conveyor   ...       ...   

DP10 Full load turntable   ...       ...   
DP11 Sheets' dispenser   ...       ...   

DP12 Stretch wrapper   ...       ...   

DP13 Print and apply labeler   ...       ... 1 

With design parameters (𝐷𝑃) defined, they need to be mapped to engineering 

attributes (𝐸) in stage 𝑆3.2. This task has been performed through a design matrix (Suh, 

2001), giving rise to product family architecture (𝑃𝐹𝐴), i.e. [𝐷𝑃]𝑚 = [𝑃𝐹𝐴]𝑚×𝑛[𝐸]𝑛. 

Then, by using the Ranking Order Clustering algorithm (King, 1980), the [𝑃𝐹𝐴]𝑚×𝑛 

had its rows and columns iteratively rearranged, until both be arranged in order of 

decreasing value when read as binary words. Right after, at stage 𝑆3.3, the functional
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Table 37. Modular product family architecture. 
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    E31 E34 E35 P E32 E33 E36 E1 E7 E4 E5 E2 E17 E23 E24 E6 E16 E11 E12 E13 E14 E18 E19 E22 E25 E15 E26 E27 E8 E9 E21 E28 E10 E20 E29 E30 E3 

DP2 Packages' singulation conveyor 1 1 1 1 1 1 1 1 1 1 1 1 1                         

DP1 Packages' accumulation conveyor 1 1 1 1 1 1 1 1 1 1 1 1                          

DP5 End effector 1 1 1 1 1 1 1 1 1 1 1  1 1 1 1                      

DP4 Articulated robotic arm 1 1 1 1 1 1 1 1 1        1 1 1 1 1 1 1               

DP11 Sheets' dispenser 1 1 1 1 1 1 1 1      1 1         1 1             

DP12 Stretch wrapper 1 1 1 1 1 1 1 1         1         1 1 1          

DP9 Full load discharge conveyor 1 1 1 1 1 1 1 1                  1   1 1 1 1      

DP10 Full load turntable 1 1 1 1 1 1 1 1                  1   1 1 1 1      

DP7 Pallet's infeed conveyor 1 1 1 1 1 1 1 1                  1   1 1 1       

DP8 Pallet's shuttle car 1 1 1 1 1 1 1 1                  1   1 1 1       

DP6 Pallet's dispenser 1 1 1 1 1 1 1 1                     1 1 1  1 1    

DP13 Print and apply labeler 1 1 1 1 1 1 1          1                  1 1  

DP3 Packages' barcode reader 1 1 1 1                                 1 
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modules (𝐹𝑀) have been formatted, and had its clustering solution evaluated by the 

Functional Modularity Index (𝑀𝐼𝑓) at stage 𝑆3.4 (Jung and Simpson, 2017). This 

process has been repeatedly performed until the clustering solution reaches the 𝑀𝐼𝑓 =

0.58, a value higher than the threshold previously defined (𝑀𝐼𝑓 ≥ 0.5). As a result, the 

product family architecture has been decomposed into 9 functional modules as shown in 

Table 37, i.e. 𝐹𝑀6 = {𝐷𝑃7, 𝐷𝑃8, 𝐷𝑃9, 𝐷𝑃10, 𝐸8, 𝐸9, 𝐸21, 𝐸28}. Although some 

engineering attributes are influenced by the same design parameters, the final solution 

consisted of an uncoupled design matrix following the independence axiom of 

Axiomatic Design (Suh, 1998).  

The next issue is to specify the engineering attributes values (𝐸𝑣) resulting from 

different physical characteristics that a design parameter (𝐷𝑃) might assume. In MDM, 

these entities are called design parameter instances (𝐷𝑃𝐼), and its definition is 

performed at the stage 𝑆3.5. In this illustrative example, this task has been assisted by 

the Classification Scheme presented in Table 36, along with the Analysis of Existing 

Technical Systems (Pahl et al., 2007). Based on available technology and existing 

product features, a set of instances has been deductively defined for each design 

parameter (𝐷𝑃) compounding the functional modules (𝐹𝑀), as presented in Table 38. 

In total, 110 design parameter instances have been specified, and the resulting 

combination of them, along with its functional modules, overcome millions of product 

family variants, as illustrated in Figure 46. However, to reduce the manufacturing 

complexity, the MDM claims that only those variants that better balance the fulfillment 

of market needs and the resulting profitability to achieve them should integrate the 

product family structure, otherwise, they should be discarded. In this sense, in addition 



 

181 

 

to the engineering attributes values (𝐸𝑣), the variable cost (𝐶𝑣) of a design parameter 

instance should be computed to allow this further evaluation, i.e. 𝐷𝑃𝐼𝑖 = {𝐸𝑣𝑖, 𝐶𝑣𝑖}. 

Table 38. Design parameter instances. 

FMi DPIij Description of design parameter instance E1 E2 E3 E4 E5 E6 ... E36 Cv 

FM1 DPI1.1 Roller top modular belt - 400 x 2000 mm - 30kgf 1 2  150 600  ... 2 2,059.38 

... ... ... ... ...  ... ...  ... ... ... 
FM1 DPI1.8 Live roller - 600 x 3000 mm - 30kgf 1 3  100 600  ... 3 3,002.50 

FM1 DPI2.1 Friction top and angled roller modular belt 1 3  150 600  ... 2 2,727.50 

... ... ... ... ...  ... ...  ... ... ... 
FM1 DPI2.4 Live roller with pneumatic stopper / aligner 1 3  100 600  ... 3 3,085.50 

FM2 DPI5.1 Vacuum style - surface pad - 400 x 600 mm - 1 x 8 ≤ 8kgf 1   100 600 450 ... 2 2,800.00 

... ... ... ...   ... ... ... ... ... ... 

FM2 DPI5.40 Finger style - 400 x 300 mm - 2 x 15 ≤ 30kgf 2   100 600 450 ... 3 17,500.00 

FM3 DPI4.1 Cobot - payload ≤ 10 kgf - 1 SKU(s) 360      ... 3 46,250.00 

... ... ... ...      ... ... ... 

FM3 DPI4.31 Cobot - payload ≤ 50 kgf - AMR - 4 SKU(s) 120      ... 3 156,750.00 

FM4 DPI11.1 Horizontal sheets' hopper 0,8      ... 1 575.00 
FM4 DPI11.2 Angled sheets' hopper 0,8      ... 1 575.00 

FM5 DPI12.1 Self-propelled robots ≤ 250% 1      ... 3 16,000.00 

... ... ... ...      ... ... ... 
FM5 DPI12.5 Rotating arm ≤ 400% 1      ... 3 50,000.00 

FM6 DPI7.1 Chain-driven live roller conveyor (CLRC) - load weight ≤ 2.000 kgf 1      ... 3 3,750.00 

FM6 DPI7.2 Two / three-strand chain conveyor (TCC) - load weight ≤ 2.000 kgf 1      ... 3 4,125.00 
FM6 DPI7.3 Manual loading / unloading - load weight ≤ 2.000 kgf 1      ... 0 0.00 

FM6 DPI8.1 Autonomous mobile robot (AMR) - CLRC - load weight ≤ 1.000 kgf 1      ... 3 80,500.00 

... ... ... ...      ... ... ... 
FM6 DPI8.6 Autonomous mobile robot (AMR) - TCC - load weight ≤ 2.000 kgf 1      ... 3 149,950.00 

FM6 DPI9.1 Chain-driven live roller conveyor (CLRC) - load weight ≤ 2.000 kgf 1      ... 3 3,750.00 

FM6 DPI9.2 Two / three-strand chain conveyor (TCC) - load weight ≤ 2.000 kgf 1      ... 3 4,125.00 
FM6 DPI9.3 Manual loading / unloading - load weight ≤ 2.000 kgf 1      ... 0 0.00 

FM6 DPI10.1 Turntable - CLRC - load weight ≤ 2.000 kgf 1      ... 3 7,500.00 

FM6 DPI10.2 Turntable - TCC - load weight ≤ 2.000 kgf 1      ... 3 8,250.00 

FM7 DPI6.1 Stripper style with pallet hopper 1      ... 3 6,250.00 
FM7 DPI6.2 Lift and separate with pallet hopper 1      ... 3 10,250.00 

FM7 DPI6.3 Screw style with pallet hopper 1      ... 3 8,250.00 

FM8 DPI13.1 All-electric automated labeling       ... 2 11,250.00 

FM9 DPI3.1 Image-based barcode reader (1D and 2D)   0,1    ...  3,750.00 
FM9 DPI3.2 Laser barcode scanner (1D and 2D)   2    ...  2,500.00 

The variable cost estimation takes place at the stage 𝑆3.6, and borrows the 

concept of the cost-related design feature (𝐶𝐷𝐹) from the Pragmatic Approach to 

Product Costing (Jiao and Tseng, 1999b). The reasoning here is to identify those design 

features (𝐶𝐷𝐹𝑖) from which the variable cost of a design parameter (𝐷𝑃) can be 

completely determined, and then, to estimate a cost coefficient (𝜃𝑖) for each 𝐶𝐷𝐹, in 

order to derive a particular solution from the Equation 11. 

𝐶𝑣𝑖 = ∑𝜃𝑖 . 𝐶𝐷𝐹𝑖

𝑛

𝑖=1

 11 
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Figure 46. Product family structure with potential design parameter instances.
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In this illustrative example, the cost-related design features (𝐶𝐷𝐹) have been 

identified for every design parameter (𝐷𝑃) compounding the product family structure, 

as shown in Figure 47. Then, the cost coefficient (𝜃) of each 𝐶𝐷𝐹 has been estimated in 

two complementary ways. When historical data on the products’ costing were available, 

a sample of variable costs related to those features of interest has been averaged. In such 

cases where the data were not available, some suppliers have been requested for 

quotation (Gümüş, 2014). As an example, the variable cost of design parameter instance 

𝐷𝑃𝐼1.1 has been estimated as follows. First, the particular solution for 𝐷𝑃1 has been 

established according to Equation 12. The cost coefficients comprising this formula 

derived from the existing products’ costing provided by the two manufacturers that 

contributed to this research. Then, considering 𝐷𝑃𝐼1.1 composed by a roller top 

modular belt, with 1,2 m2 of surface area, and tractioned by one gearmotor, the variable 

cost has been obtained through Equation 13. 

𝐷𝑃1𝐶𝑣
= (881.25 x 𝐶𝐷𝐹1.1.1) + (976.56 x 𝐶𝐷𝐹1.1.2) + (887.50 x 𝐶𝐷𝐹1.2) 12 

𝐷𝑃𝐼1.1𝐶𝑣
= (881.25 x 0) + (976.56 x 1,2) + (887.50 x 1) =  2,059.38 [ 𝑈𝑆𝐷] 13 

After that, to identify the physical interactions within and across functional 

modules, 12 rough geometric layouts have been created, as illustrated in Figure 48. In 

this example, no incompatible design parameter instances have been found nor new 

design parameters have been created. This process took place in step 𝑆3.7, and the 

resulting interactions served as an input flow for mapping the structural dependencies 

among design parameters in step 𝑆3.8. 
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Figure 47. Cost-related design features (𝐶𝐷𝐹).
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Figure 48. Example of the geometric layout. 

Then, at stage 𝑆3.9, the functional decomposition has been transferred to the 

physical decomposition. This process consisted of simply forming physical modules 

(𝑀) as a subset of functional modules (𝐹𝑀) by only considering the design parameters 

(𝐷𝑃)  as constituents, i.e. 𝑀6 ⊂ 𝐹𝑀6 = {𝐷𝑃7, 𝐷𝑃8, 𝐷𝑃9, 𝐷𝑃10}. The result is shown 

in the Design Structure Matrix (Browning, 2001) presented in Table 39. 

Table 39. Physical decomposition. 

  DP1 DP2 DP3 DP4 DP5 DP6 DP7 DP8 DP9 DP10 DP11 DP12 DP13 

DP1 Packages' accumulation conveyor 1 1         1   

DP2 Packages' singulation conveyor 1 1   1      1   

DP3 Packages' barcode reader   1           

DP4 Articulated robotic arm    1 1         

DP5 End effector  1   1      1   

DP6 Pallet's dispenser      1 1 1      

DP7 Pallet's infeed conveyor      1 1 1 1     

DP8 Pallet's shuttle car      1 1 1 1 1  1  

DP9 Full load discharge conveyor       1 1 1 1  1 1 

DP10 Full load turntable        1 1 1  1  

DP11 Sheets' dispenser           1   

DP12 Stretch wrapper        1 1 1  1  

DP13 Print and apply labeler 
            1 

With the physical modules defined, its clustering solution has been evaluated by 

the Physical Modularity Index (𝑀𝐼𝑝) at stage 𝑆3.10 (Jung and Simpson, 2017). As a 
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result, the clustering solution reached the 𝑀𝐼𝑝 = 0.77, indicating this way the product 

family has a modular architecture unconstrained by physical interactions. 

After defining the modular product family architecture and the potential design 

parameter instances to integrate it, the last step (𝑆3.8) of this third class of design 

problems is to establish the design rules for product family configuration. These rules 

consist of a set of mathematical constraints guiding the end product configuration to a 

feasible solution. Some of these rules include: (i) the payload capacity of the articulated 

robotic arm should be higher than end effector payload capacity, (ii) the number of 

packages’ accumulation/singulation conveyors should not exceed the number of 𝑆𝐾𝑈𝑠 

being palletized concurrently, (iii) one sheets’ dispenser should serve up to 2 𝑆𝐾𝑈𝑠 

being palletized concurrently, among others. However, these rules are implicit 

relationships among the entities defined so far (𝐴, 𝐸, 𝐸𝑣 ,𝑊𝑃, 𝐷𝑃, 𝐷𝑃𝐼, 𝐹𝑀,𝑀), which 

makes it very difficult to manipulate them without creating any “hidden” variable. 

Therefore, at this stage, the MDM makes use of dummy engineering variables (𝐷𝐸) to 

facilitate the mathematical formulation of design rules.  

Another important issue in this step is to define how the resulting engineering 

attributes (𝐸), or the total variable cost (𝐶𝑣) of product family variant (𝑃𝐹𝑣) is 

calculated. For example, let’s suppose a product family variant having the following 

configuration: 𝑃𝐹𝑣 = {𝐷𝑃𝐼1.1, 𝐷𝑃𝐼2.1, 𝐷𝑃𝐼4.1, 𝐷𝑃𝐼5.1, 𝐷𝑃𝐼7.3, 𝐷𝑃𝐼11.1}. If each 

𝐷𝑃𝐼, has the maximum quantity equals to one, it is possible to calculate its total variable 

cost (𝐶𝑣) by summing the corresponding 𝐶𝑣 of each 𝐷𝑃𝐼 chosen. From the values 

presented in Table 38, the result would be 𝐶𝑣 = 54,411.88 [𝑈𝑆𝐷]. However, if we want 

to calculate the resulting 𝐸1 of the same 𝑃𝐹𝑣 configuration, the approach should be 

different. The 𝐸1 consists of the palletizer production rate measured in terms of 

packages per hour. This engineering attribute has the design parameter 𝐷𝑃4 as its basic 
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source. The other design parameters, in turn, work as moderating variables of 𝐷𝑃4, 

amplifying or reducing its values. Therefore, the resulting 𝐸1 should be calculated by 

multiplying the corresponding 𝐸𝑣 of each 𝐷𝑃𝐼 chosen. From the values presented in 

Table 38, the result would be 𝐸1 = 288 [𝑝𝑘𝑔/ℎ]. In MDM, there are two other 

approaches for calculating the resulting engineering attributes (𝐸). One that accounts 

for the maximum 𝐸𝑣 of each 𝐷𝑃𝐼 chosen, and the other that accounts for the minimum. 

Back to the first class (𝐶𝑝1), at stage 𝑆1.3, the issue was to aggregate the 

customer’s choice probability, the design rules, the set of design parameter instances, 

and the enterprise-level indicators (demand, price, and profit) into a single model for 

combining and selecting the design parameter instances to compound the modular 

product family structure. In this example, the conceptual model built before the 

mathematical implementation is shown in Figure 49, and for illustrative simplicity, it 

has not considered any scalable engineering attributes.  

 

Figure 49. Configuration model. 

The reasoning behind this model is to configure a product family variant (𝑋 ), 

characterized by design parameter instances (𝐷𝑃𝐼⃗⃗ ⃗⃗ ⃗⃗  ⃗) and price (𝑃), i.e. 𝑋 = {𝐷𝑃𝐼𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 𝑃}, to 

a specific market niche (𝑀𝑠 ), with the purpose of maximizing the partial profit (𝑉𝑀𝑠), 
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while subject to constraints. One mathematical model has been built for each target 

market niche (𝑀𝑠), and the resulting profitability of each niche, the partial profit, was 

then aggregated into the product family profit (𝑉). 

Based on the mathematical model previously defined, the configuration process 

takes place in the fourth class of design problems (𝐶𝑝4). In this example, the steps 𝑆4.1 

and 𝑆4.3 have been performed through a Genetic Algorithm (𝐺𝐴) (Li, Huang and 

Newman, 2008) implemented in software R (Team, 2019). Besides that, to relax the 

computational burden, the experts manually configured a product family variant, for 

each niche, to serve as a starting point for 𝐺𝐴 searching as illustrated in Figure 50 (Daly 

et al., 2012). With a population size of 50 product family variants, crossover probability 

equals 0.8, mutation probability equivalent to 0.1, and elitism probability set to 0.1, the 

𝐺𝐴 found the results presented in Table 40, after 200 generations. 

 

Figure 50. Example of the genetic algorithm evolution process. 
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Table 40. Results of the configuration process. 

𝑀𝑠 Product family variant (𝑋 ) 𝑀𝑘 𝑆𝑀𝑠 𝑃𝑟 𝑄 𝐶𝑣 [USD/SKU] 𝑃 [USD/SKU] 𝑉𝑀𝑠 [USD/year] 

Ms1.1 [DPI1.5, DPI2.2, DPI5.2, 
 DPI4.7, DPI11.1, DPI7.3]  

773 10.0% 13.9% 11 36,650.50 157,500.00 1,329,344.50 

Ms1.2 [DPI1.5, DPI2.2, DPI5.18, 

 DPI4.7, DPI11.1, DP12.1, DPI7.3] 

773 7.0% 17.9% 9 44,850.50 157,500.00 1,126,495.00 

Ms1.3 [DPI1.5, DPI2.2, DPI5.38, 

 DPI4.21, DPI11.1, DPI7.3] 

773 3.0% 17.4% 4 46,255.50 157,500.00 444,978.00 

Ms2.1 [DPI1.5, DPI2.2, DPI5.32, DPI4.20, 

 DPI11.1, DPI12.4, DPI7.1, DPI8.4, 
 DPI9.1, DPI10.1, DPI6.3, DP13.1, DP3.1] 

773 38.0% 19.2% 56 170,480.50 245,000.00 4,173,092.00 

Ms2.2 [DPI1.5, DPI2.2, DPI5.32, DPI4.20, 

 DPI11.1, DPI12.4, DPI7.1, DPI8.1, 

 DPI9.1, DPI10.1, DPI6.3, DP13.1, DP3.1]  

773 26.0% 19.2% 39 170,293.00 245,000.00 2,913,573.00 

Ms2.3 [DPI1.5, DPI2.2, DPI5.39, DPI4.20, 

 DPI11.1, DPI12.4, DPI7.1, DPI8.1, 
 DPI9.1, DPI10.1, DPI6.3, DPI13.1, DPI3.1]  

773 11.0% 25.2% 21 167,793.00 260,000.00 1,936,347.00 

All 

(PF1) 

[DPI1.5, DPI2.2, DPI5.2, DPI5.18, DPI5.32, 

 DPI5.38, DPI5.39, DPI4.7, DPI4.20, 

 DPI 4.21, DPI11.1, DPI12.1, DPI12.4, 
 DPI7.1, DPI7.3, DPI8.1, DPI8.4, DPI9.1, 

 DPI10.1, DPI6.3, DPI13.1, DPI3.1] 

773 95.0% 18.2% 141 20,748,670.50 32,672,500.00 11,923,829.50 

The last row of Table 40 represents the overall results of the product family 

𝑃𝐹1, from which it is possible to obtain the product family profit (𝑉) in step 𝑆4.4. The 

maximum profit found, 𝑉 = 11.9x106 [𝑈𝑆𝐷/𝑦𝑒𝑎𝑟], is higher than the expected profit 

𝑉𝑒 = 2x106 [𝑈𝑆𝐷 𝑦𝑒𝑎𝑟⁄ ], indicating in this way that it is worth it to invest in the design 

of the product family. With the product family profit considered satisfactory, i.e. 𝑉 ≥

𝑉𝑒, those most profitable variants have been computed, and the design parameter 

instances compounding them have been selected to integrate the modular product family 

structure at the stage 𝑆4.5. The final product family structure, compound by 9 modules, 

22 design parameter instances, and capable of generating up to 120 variants is 

represented by the Generic Bill-of-Material shown in Figure 51 (Li, Huang and 

Newman, 2008). According to the MDM proposition, this is the structure that should be 

developed in the subsequent design stages of the product development process. 
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Figure 51. Final product family structure.
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6.5 Discussion of the Results 

This section discusses the application of MDM in the light of its two expected 

outcomes: (i) the modular product family structure, (ii) and the decision on investing or 

not in the product family design. With this respect, the first thing noted was that, 

although the price (𝑃) has a negative influence on the choice probability (𝑃𝑟), the 

model presented the tendency to adjust it as high as possible to maximize the partial 

profit (𝑉𝑀𝑠). That is because the marginal increase in partial profit derived from the 

increment in price is more substantial than the one retrieved from the augmentation in 

choice probability. To attenuate this behavior, a constraint has been implemented to 

limit the maximum price as being equals or lower than the price of its most expensive 

competing alternative in the same market niche (𝑀𝑠). As a result, the configuration 

model adjusted the price of each variant presented in Table 40 to its maximum value. In 

contexts of low data availability, where the weights (𝑤) are estimated through the 𝐴𝐻𝑃, 

this undesired effect tends to aggravate as the number of customers' desired attributes 

(𝐴) grows. To overcome this limitation, one alternative solution would be to consider 

the price as a parameter instead of a decision variable of the configuration model. In this 

sense, the price should be intentionally defined based on the strategy of product family 

positioning established at the step 𝑆1.1. 

As well as price, other variables might influence the outcomes of the 

configuration model build trough the MDM method. To better understand the stability 

of the model, a sensitivity analysis was performed (Hsiao et al., 2013) guided by the 

following question: What are the values of the influencing variables (𝑉𝑎𝑟) that would 

keep the MDM outcomes the same? To answer this question, 8 scenarios were 

evaluated in comparison to the one obtained in the last section (Scenario 0). The 
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strategy adopted for the analysis was to change one influencing variable at a time while 

keeping the others constant. The results of this process are presented in Table 41. 

Table 41. Sensitive analysis. 

Scenario 𝑉𝑎𝑟 ∆𝑉𝑎𝑟 𝑀𝑘 𝑆𝑀𝑠  𝑃𝑟 𝑄 𝐶𝑣 [USD/SKU] 𝑃 [USD/SKU] 𝑉 [USD/SKU] ∆𝑉 

0 - Highest price (base) 𝑃 - 773 95% 18.2% 141 20,748,670.50 32,672,500.00 11,923,829.50 - 

1 - Reduced price 𝑃 -14.3% 773 95% 19.4% 150 21,674,605.00 29,607,857.14 7,933,252.14 -33.5% 

2 - Reduced market size 𝑀𝑘 -10.2% 694 95% 18.2% 128 18,726,009.00 29,632,500.00 10,906,491.00 -8.5% 

3 - Different share of  

market niches 
𝑆𝑀𝑠 random 773 95% 16.6% 127 13,898,271.00 26,177,500.00 12,279,229.00 3.0% 

4 - Variation in the DPI's 

variable cost 
𝐶𝑣 ±97.0% 773 95% 18.2% 141 17,661,010.43 32,672,500.00 15,011,489.57 25.9% 

5 - Variation in the DPI's 

engineering attribute values 

𝐸𝑣 ±6.0% 773 95% 18.3% 142 20,919,151.00 32,917,500.00 11,998,349.00 0.6% 

6 - Variation in the engineering 

attribute weights 

𝑤 ±40.0% 773 95% 18.1% 140 20,578,377.50 32,427,500.00 11,849,122.50 -0.6% 

7 - Variation in the engineering 
attribute values of competing 

alternatives 

𝐸𝑣 ±13.0% 773 95% 18.2% 141 20,748,858.00 32,672,500.00 11,923,642.00 0.0% 

8 - Addition of one more 

competing alternative within 

each market niche 

𝐽 +20.0% 773 95% 15.1% 116 17,141,865.50 26,925,000.00 9,783,134.50 -18.0% 

In Scenario 1, the price of each variant presented in Table 40 has been reduced 

in 14.3%, consequently the product family profit (𝑉) dropped 33.5% if compared to 

Scenario 0. Even with this reduction in profit, the product family structure presented in 

Figure 51, and the decision to invest in the product family design (𝑉 ≥ 𝑉𝑒) kept the 

same. Following the same reasoning, no changes in MDM outcomes have been found 

by reducing the market size (𝑀𝑘) in up to 10.2% in Scenario 2. Regarding Scenario 3, 

the share of each market niche (𝑆𝑀𝑠) has been randomly altered without changing the 

total share, i.e. ∑ 𝑆𝑀𝑠𝑖 ≤ 0.95𝑀𝑠2.3
𝑖=𝑀𝑠1.1 . As a result, an increase of 3.0% in profit and no 

modifications in MDM outcomes have been perceived. In Scenario 4, a random 

variation of up to ±97.0% in the variable cost (𝐶𝑣) of each design parameter instance 

(𝐷𝑃𝐼) has been found with no implications in MDM outputs as well. That is quite 

interesting, and the reason for that lies in the fact the variation of each 𝐷𝑃𝐼′𝑠 variable 

cost is compensated when summed to compound the variable cost of the product family 
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variant (𝑃𝐹𝑣). The same interpretation holds for the engineering attribute values (𝐸𝑣) in 

Scenario 5, but at lower variation rates. In Scenario 6, a random variation of up to 

±40.0% in each engineering attribute weight (𝑤) has been percieved with a small 

change in profit and no changes in MDM outcomes. That is because in 𝐴𝐻𝑃 the sum of 

weights is equal to one, i.e. ∑ 𝑤𝑖 = 1𝑛
𝑖=1 , therefore, the change in one element results in 

an inverse proportional distribution to the others. Scenario 7, in turn, kept the same 

results of Scenario 0, with a random variation of up to ±13.0% employed in engineering 

attribute values of competing alternatives. Finally, in Scenario 8, including up to one 

competing alternative (𝐽) in each market niche, the total choice probability and profit 

decrease by 17.0% and 18.0% respectively, but no changes in MDM outcomes are 

noted. This proportional decrease has to do with the independence of irrelevant 

alternatives (𝐼𝐼𝐴) property, which consists of an important characteristic of those 

models where the customer choice probability (𝑃𝑟) derives from the 𝐴𝐻𝑃. This 

property implies that if a given alternative is changed such that its market share 

increases, the increased change in market share of the alternative will result in an equal 

percent decrease in market share for all other alternatives in the choice set. For such 

cases in which this property is undesirable, the Nested Logit formulations can be used to 

relax this assumption, as indicated in Table 10 (Chen, Hoyle and Wassenaar, 2013). 

In summary, the product family profit of each scenario presented in Table 41 is 

higher than the expected profit, i.e. 𝑉 ≥ 𝑉𝑒. It indicates that the building of the modular 

product family structure, the first MDM outcome, is more sensitive to the variables 

analyzed than the decision on investment in the product family design, the second 

MDM outcome. In other words, it was the product family structure that limited the 

increase of ∆𝑉𝑎𝑟. Regarding the first outcome, the variable that influences it the most is 

the engineering attribute value (𝐸𝑣), since a small change on it (±6.0%), might 
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originate a different product family structure. The second outcome, in turn, is most 

influenced by the price (𝑃) followed by the variable cost (𝐶𝑣). It can be seen by its 

respective variations in profit (-33.5% and +25.9%) presented in Scenarios 1 and 4. 

These results indicate, that even from a deterministic perspective and under a context of 

low data availability, the outcomes of the MDM are reasonably stable.  

Finally, the product family 𝑃𝐹1 was supposed to be a family of Autonomous 

Mobile Palletizers, however, due to the high variable cost of those design parameter 

instances related to the autonomous mobile cobots (𝐴𝑀𝐶) technology, i.e. 

{𝐷𝑃𝐼4.9: 11, 𝐷𝑃𝐼4.17: 19, 𝐷𝑃𝐼4.23: 25, 𝐷𝑃𝐼4.29: 31}, the model ended up selecting 

those related to the cobot technology, i.e, {𝐷𝑃𝐼4.7, 𝐷𝑃𝐼4.20, 𝐷𝑃𝐼4.21}. As a result, a 

family of Collaborative Robotic Palletizers has been conceptually designed. In the same 

way that the configuration model opted for those cobot-related 𝐷𝑃𝐼′𝑠, in case of the 

technology becomes less expensive, or even in case of implementing the product family 

𝑃𝐹2, both the 𝐴𝑀𝐶 or unmanned aerial vehicles (𝑈𝐴𝑉) can give rise to new instances 

of module 𝑀3 as illustrated in Figure 52(a) and (b) respectively. 
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Figure 52. (a) Autonomous mobile palletizer; (b) Autonomous aerial palletizer. 

6.6 Conclusions 

This paper introduced the Market-Driven Modularity (MDM), an integrated 

method to conceptually design modular product families that balance the fulfillment of 

market needs and the resulting profitability to achieve them. To prevent the 

development of non-profitable product families resulting from the missing-link between 

marketing and engineering domains, the MDM uses the discrete choice modeling for 

quantifying the customers’ preferences, modularity as a mechanism to provide product 
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variety, the product family as a strategy to manage the trade-off between the variety and 

cost, and profit as a moderating variable to balance the level of accomplishment of the 

customers’ needs. 

In order to provide a better understanding of the proposed method, this paper 

presented an illustrative application of the MDM within the product development 

process of a midsize company that produces capital goods. In this sense, the MDM was 

employed to conceptually design a new product family generation in a scenario of low 

data availability, where the context unit was the Brazilian Palletizer Market, and the unit 

of analysis was a Family of Collaborative Robotic Palletizers. The results indicated, that 

even from a deterministic perspective and under a context of low data availability, the 

two outcomes of the MDM method, (i) the modular product family structure and (ii) the 

decision on investment in the product family design, are reasonably stable. 

From this application, it was possible to identify the following contributions. (i) 

The MDM integrated the four classes of design problems (𝐶𝑝1, 𝐶𝑝2, 𝐶𝑝3, 𝐶𝑝4) prevalent 

in the literature into a single method to conceptually design modular product families. 

Although it has been implicitly done by the work of Jiang and Allada (2005), this 

explicit and systematic approach proposed by the MDM debuts another class of design 

problems for those Integrated Methods for Product Family Design. (ii) It is well known 

that this integration might come together with a certain level of inflexibility, that MDM 

tries to overcome by mixing and matching the techniques to execute each step of the 

method according to the context it is inserted. Concerning the Customers’ Choice 

Modelling (𝐶𝑝2), the MDM (iii) expands the boundaries of the Market Segmentation 

Grid (Meyer and Lehnerd, 1997) to a multidimensional perspective, and uses the (iv) 

Analytic Hierarchy Process (Saaty, 2008) to model the customers’ choice probabilities 

for multiple market segments/niches in contexts of low data availability. With respect to 
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the Product Family Modelling (𝐶𝑝3), (v) the MDM uses techniques such as the 

Classification Scheme and the Analysis of Existing Technical Systems (Pahl et al., 

2007) to assist in the abductive process of design parameters formulation. (vi) 

Moreover, it introduces the Functional to Physical Decomposition, an approach to deal 

with functional and physical modularity in product family architectures. (vii) 

Additionally, the MDM presents a heuristic to estimate the variable costs of design 

parameters at the early design stages. Regarding the Product Family Configuration 

(𝐶𝑝4), different from other methods that adopt it to configure a single variant (Gauss, 

Lacerda and Miguel, 2020) (Article 1), (viii) the MDM uses this class for building the 

product family structure. (ix) More than that, when combined with the Product Family 

Planning and Positioning (𝐶𝑝4), it generates not only a lucrative product family 

structure, but also provides the enterprise-level indicators to support the decision-

making on invest or not in the product family design. 

We are at the beginning of endeavor towards modularity into product family 

design, therefore there are some limitations concerning the MDM method, which 

include: (i) So far, the MDM tackles the design of modular product families from a 

deterministic perspective, and although it slightly approaches the variation of the 

influencing variables on its results, it does by only changing one variable at a time. But 

what would be the results with all variables changing together? (ii) Besides that, the 

MDM does not consider the profile (risk taker/averse) of the decision-maker into the 

decision on investing or not in the product family design. (iii) Moreover, the proposed 

method conceptually designs product families for a single and static scenario. But what 

would be the product family structure to handle multiple and dynamic scenarios under 

deep uncertainty? In our point of view, these are not only research limitations but also 

future research directions on MDM. Besides that, we also encourage the scholars and 
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practitioners to apply the MDM in the design process of consumer and intermediate 

goods, as well as to compare the results of the same product family design under 

contexts of low and high data availability. 

7 CONCLUSIONS 

This work used design science research to integrate marketing, engineering, and 

economic aspects into a single approach to conceptually design lucrative product 

families. In this context, the traditional stages of design science research methodologies 

were decomposed into 32 steps to provide practical guidance on the artifacts’ design 

and evaluation. By following these steps, a field problem gave rise to a method, entitled 

Market-Driven Modularity (MDM), which was validated through a series of practical 

applications and experts’ judgments. 

The main outcomes of this process are synthesized in Figure 53, wherein the 

design proposition, compound by the MDM (artifact) along with its construction and 

contingency heuristics, presented major implications in three fields of study: product 

family design, modularity, and design science research. The implications are of two 

natures, the contributions, and future research problems. The contributions consist of 

the MDM outcomes that overcome the current research problems/limitations of a 

theoretical framework. The future research problems, in turn, are the shortcomings of a 

theoretical framework revealed by the artifact’s design and evaluation. 

In this sense, the first contribution of this research lies in the integrative 

connection among existing methods to design module-based product families. An 

integration performed in the form of a functional model and structured classes of design 

problems, with both together serving as a meta-method for organizing the research in 

the field of module-based product design as well as a roadmap for implementing it in 
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industry. This issue is particularly important given the broad array of methods created 

over the past years, that consequently exist, in isolation from one other (Borjesson and 

Hoelttae-Otto, 2014; Otto et al., 2016). 

 

Figure 53. Implications of MDM. 

The second contribution, that responds to the research question posed in this 

work, is the integration of marketing, engineering, and economic aspects into a single 

method to conceptually design gainful product family structures. This is beneficial for 

two reasons. First, the demand of potential product family variants can be compared 

against competing alternatives on the market, so that the economic benefits of a product 

family design can be assessed before making relevant investments on it, preventing in 

this way the development of non-profitable product families (Simpson et al., 2014). 

Then, by highlighting the most valuable combinations, manufacturers can prioritize the 

modules to be developed at subsequent design stages (Colombo et al., 2019), which 

directly implies the reduction of design and manufacturing costs as well as in shorter 
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time-to-market (Ulrich and Tung, 1994). 

These two contributions enhance the body of knowledge on product family 

design, that from the MDM’s limitations, promotes another cycle of investigation on 

how to conceptually design lucrative product families for multiple dynamic scenarios 

under uncertainty. A perspective capable of improving the adaptability of enterprises to 

meet uncertain markets, customer requirements, technologies, policies, and regulations 

(Han et al., 2019). 

The MDM has also contributed to the theoretical framework of modularity by 

proposing an approach to deal with the functional and physical decomposition of 

product family architectures in closed-loop control. This approach prevents the physical 

interactions constraining the functional modules, favoring in this way the obtention of 

uncoupled or decoupled designs (Suh, 1998). This way of thinking modularity led us to 

question the sufficiency of the current definition of modular architectures when the 

intensity of relationships is considered. This understanding might be beneficial for 

identifying modular patterns in integral architectures when the decomposition of 

existing product structures is required. Besides that, another future research direction, 

that emerged from the MDM’s contingency heuristic, was the potential limitation of 

modularity in dealing with aesthetics variety, a relevant requirement on the design of 

consumer durables (Fung and Chong, 2007). 

Regarding the design science research, two other MDM’s contributions have 

been found. The first was the practical guidance on the abductive process of the 

artifact’s design, an issue slightly tackled by Gacenga et al. (2012) but not well studied 

and documented since then. The reasoning behind it lies in the fact that it does not 

matter how robust the artifacts’ evaluation is if only low utility artifacts compound the 

design space. This implies that, at the end of the research process, no artifact or only 
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low utility ones might be validated. In other words, by enhancing the quality of design 

space, the probability of validating satisfactory artifacts increases, becoming the overall 

research process more efficient. The second contribution was the practical guidance on 

the artifact’s evaluation, a subject studied in depth by others research (Gill and Hevner, 

2013; Venable, Pries-Heje and Baskerville, 2016; Gassel, Reymen and Maas, 2019), but 

which still lacks detailed procedures on how testing and validating artifacts. Coupled 

with that arises the need to better define which levels of artifact’s evaluation lead to 

satisfactory results in terms of pragmatic validity and practical relevance. 

We are at the beginning of endeavor towards modularity into product family 

design, therefore there are some limitations concerning the MDM, which include: So 

far, the MDM tackles the design of modular product families from a deterministic 

perspective, and although it slightly approaches the variation of the influencing 

variables on its results, it does by only changing one variable at a time instead of all 

together. Besides that, the proposed method conceptually designs product families for a 

single and static scenario, rather than multiple and dynamic ones. Additionally, the 

MDM does not consider the profile (risk taker/averse) of the decision-maker into the 

decision on investing or not in the product family design.  
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APPENDIX A – ARTICLE 1 

Table A1. Protocol for systematic literature review. 

1.0 Conceptual 

framework 

1.1 Increased demand for a greater variety of consumer products has forced many companies to rethink their strategies to offer more product variants. For manufacturers, producing a variety 

of products can satisfy this increasing demand and help companies gain more market share; however, increased variety can lead to higher design and production costs as well as longer 

lead times for new variants. As a result, a trade-off arises between cost-effectiveness and satisfying diverse customer demand (Simpson et al., 2014). 

    1.2 As a general reference, based on data from practical situations, it can be said that the production costs decrease by about 15 to 25% whenever the production scale is duplicated (Antunes 

et al., 2008). 

    1.3 In the same way, it can be stated that there is an increase of 20 to 25% of the cost per unit produced each time the variety of manufactured items is duplicated (Antunes et al., 2008). 

    1.4 Leveraging commonality can lead to remarkable cost savings and higher standardization of the product line. On the other hand, variety is desired because more variation results in more 

customer groups’ coverage and satisfying the specific needs of more customers. However, variety of conflicts with commonality (Fixson, 2007; Jiao, Simpson and Siddique, 2007; 

Simpson et al., 2014). 

    1.5 Commonality can reduce manufacturing and design costs by sharing the same component across different products, while concurrently providing the level of product diversity expected 

within the market space (Simpson et al., 2014). Commonality clusters the components and functions based on similarity or other criteria (Simpson et al., 2014). 

    1.6 Modularity descriptions also often encompass a combinatorial element, i.e., modules can be mixed and matched to create new variants of a product (Fixson, 2007). Some modularity 

descriptions incorporate an assessment of how a product’s functionality is provided by the product’s components (Fixson, 2007). Modularity decomposes components and functions into 

independent groups (Simpson et al., 2014). Modularity in design refers to the decomposition of a system into independent modules in such a way that interactions are interdependent 

within and independent across modules (Miguel, 2005). Modularity has been defined as the relationship between a product`s functional and physical structures such that: (i) There is a 

one-to-one or many-to-one correspondence between the functional and physical structure; and (ii) unintended interactions between modules are minimized (Jiao and Tseng, 2000). 

    1.7 Product architecture can be defined as how the functional elements of a product are arranged into physical units and how these units interact (Ulrich and Eppinger, 2012).  

    1.8 A module is a physical or conceptual grouping of components (Jiao and Tseng, 2000). 

    1.9 The platform is a set of common components, modules, or parts from which a stream of derivative products can be efficiently developed and launched (Meyer and Lehnerd, 1997) 

    1.10 The product family is a set of products that share one or more common “elements” (e.g., components, modules, subsystems, fabrication processes, assembly operations) yet target a 

variety of different market segments (Simpson et al., 2014). A product family refers to a set of similar products that are derived from a common platform and yet possess specific 

functionalities to meet particular customer requirements (Meyer and Lehnerd, 1997). 

    1.11 Research has found that the trade-off between product variety and cost-effectiveness can be appropriately managed by exploiting product family design (PFD) and platform-based 

product development, an area that has been widely studied for the past two decades (Simpson et al., 2014). 

    1.12 Over the years, there has been active work in developing methods to define these modules for product families. These methods, however, have been developed independently of one 

another, and it can be daunting to try to compare the methods and understand which approach might be suitable when or how the methods might interlink, if at all (Simpson et al., 2014). 

The reasons for the lack of practical application of these methods include: (i) The limited knowledge regarding the variety of methods available, and (ii) the difficulty of locating these 

methods within the company's development process (Bonvoisin et al., 2016). 

    1.13 Decisions made at the beginning of the development process account for about 85% of the cost of the final product (Rozenfeld et al., 2006). It has been found that approximately 60% of 

the committed cost of a product is defined in the conceptual design phase of a PDP (Jiao, 1998). The architecture of the product is established during the concept development and 

system-level design phases of development (Ulrich and Eppinger, 2012).  

2.0 Context 2.1 Engineering, production, and operations management domains. 

    2.3 Product Development Process - PDP (Ulrich and Eppinger, 2012).  

    2.2 Type of products: consumer goods (durables), intermediate goods, capital goods, and military/defense goods. 

3.0 Time  3.1 Product modularity: definitions and benefits (Gershenson, Prasad and Zhang, 2003) - Up to 2003. 

 horizon 3.2 Product modularity: measures and design methods (Gershenson, Prasad and Zhang, 2004) - Up to 2004. 

  3.3 Modular and platform methods for product family design: Literature analysis (Jose and Tollenaere, 2005) - Up to 2005. 

  3.4 Modularity in product development: a literature review towards a research agenda (Miguel, 2005) - From 1992 to 2005. 

  3.5 Modularity and commonality research: Past developments and future opportunities (Fixson, 2007) - Up to 2007. 

  3.6 Product family design and platform-based product development: a state-of-the-art review (Jiao, Simpson and Siddique, 2007) - Up to 2007. 

  3.7 Advances in Product Family and Product Platform Design (Simpson et al., 2014) - From 2007 to 2014. 

  3.8 Modularisation strategy: analysis of published articles on production and operations management (1999 to 2013) (Piran et al., 2016) - From 1999 to 2013. 

  3.9 Evolution of modularity literature: a 25-year bibliometric analysis (Frandsen, 2017) - From 1990 to 2015. 

  3.10 This study: up to 2020. 
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Table A1. (continued) 

4.0 Theoretical currents     4.1 Module-based product family design 

5.0 Language     5.1 English 

6.0 Research question     6.1 Which methods address modularity into the design of product families? 

        6.2 What kind of design problems do these methods account for? 

        6.3 For which kind of products have these methods been developed for? 

        6.5 How has the performance of these methods been assessed? 

    6.6 What are the main steps of these methods? 

    6.7 What is the execution order of these steps? 

    6.8 Which techniques are used to execute each step of these methods? 

        6.9 Is there a common underlying structure among these methods? 

7.0 Review strategy     7.1 Configurative (meta-synthesis). 

8.0 Selecting criteria 
  

  

8.1 Including criteria   8.1.1 Methods and techniques that address modularity into the design of product families (Following the conceptual framework of this protocol). 

        8.1.2 Document type: Articles. 

        8.1.3 All-access type. 

8.2 Excluding criteria   8.2.1 Scale-based product family design. 

        8.2.2 Parametric platforms. 

        8.2.3 Integral architecture. 

        8.2.4 Modularity in production. 

        8.2.5 Modularity in use. 

        8.2.6 Organisational modularity. 

        8.2.7 Modularity in services. 

        8.2.8 Manufacturing and production for product families 

        8.2.9 Supply chain issues of product families 

        8.2.10 Customer co-design. 

        8.2.11 Service design. 

        8.2.12 Software development. 

        8.2.13 Design support systems. 

        8.2.14 Aesthetics in product design. 

        8.2.15 Additive manufacturing. 

        8.2.16 Literature review. 

    8.2.17 Civil construction. 

    8.2.18 Document type: Conference paper, review, book, book chapter, and conference review. 

        8.2.19 Subjects areas such as computer science, mathematics, decision science, materials science, environmental science economics, econometrics, finance, energy, physics, and 

astronomy. 

9.0 Search terms   9.1 Modularity. 

    9.2 Modular. 

    9.3 Design. 

    9.4 Product family. 

    9.5 Product platform. 

    9.6 "Modularity" AND "design" AND ("Product family" OR "Product platform") 

10.0 Data-bases   10.1 Web of Science. 

    10.2 Scopus. 
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Table A2. Mixed coding scheme. 

Id. Codes Definition / Function Type 

Cpi Classes of design problems for PBPF:     

Cp1 Product family planning and positioning Deals with market objectives, along with technology developments guided by corporate strategies (Ulrich and Eppinger, 2012). Categorical 

Cp2 Market-driven product family design Deals with the transition of customers’ needs to functional requirements (Simpson et al., 2014). Categorical 

Cp3 Product family modeling Comprehends the definition of modules, platforms, and the product family configuration structure in terms of design parameters and 

functional requirements (Simpson et al., 2014). 

Categorical 

Cp4 Product family configuration Deals with structural configuration problem wherein the modules formulating the variant are optimally selected (Simpson et al., 2014). Categorical 

Pbi Design problems:     

Pb1.1 Strategic product family planning How to incorporate strategic axes into product family design (Jiao and Tseng, 1999a)? Open 

Pb1.2 Market segmentation How to decompose the market into several segments taking into account the industry type, customer consumption levels, regional 

characteristics, among other factors (Fan et al., 2015)? 

Open 

Pb2.1 Identification of customer needs How to derive meaning through interpretations of customers’ perceptions about the existing products (Cheng et al., 2017)? Open 

Pb2.2 Determination of relative importance among 

customer needs 

How to determine the most influential needs on customer decision making (Du, Jiao and Chen, 2014; Wei et al., 2015)? Open 

Pb2.3 Formulation of functional requirements How to translate the market-centric information into engineering specifications (Jung and Simpson, 2016; Johannesson et al., 2017)? Open 

Pb2.4 Identification of transient functional 

requirements 

How to identify the functional requirements there are prone to change in the future market (Jiang and Allada, 2005)? Open 

Pb2.5 Mapping of dependencies among functional 

requirements 

How to determine the functional requirements’ hierarchy (Alizon, Shooter and Simpson, 2007; Bonjour et al., 2009; Yan and Stewart, 

2010)? 

Open 

Pb2.6 Definition of functional requirements target 

values and ranges 

How to arrange similar customers in terms of their desired values (Park et al., 2008; Zacharias and Yassine, 2008; Mesa et al., 2014; 

Bejlegaard et al., 2018)? 

Open 

Pb2.7 Representation of functional requirements How to represent the functional view of a product family (Jiao and Tseng, 1999a; Kota, Sethuraman and Miller, 2000; Yang, Yu and 

Jiang, 2014)? 

Open 

Pb3.1 Definition and modeling of the product family 

and platforming criteria 

What strategy and criteria to use for clustering modules and identifying platforms (Fan et al., 2015; Hou et al., 2017, 2018)? Open 

Pb3.2 Formulation of design parameters How to determine the physical effect with the ability to fulfill one or more functional requirements (Gauss, Lacerda and Sellitto, 2019)? Open 

Pb3.3 Mapping of product family architecture How to map the relationships between functional requirements and design parameters (Navarrete et al., 2013; Borjesson and Hoelttae-

Otto, 2014)? 

Open 

Pb3.4 Decomposition of the system into functional 

modules 

How to decompose the product family architecture into design modules (Jiao and Tseng, 1999a)? Open 

Pb3.5 Creation of rough geometric layouts How to identify the interactions among physical components (Pakkanen, Juuti and Lehtonen, 2016)? Open 

Pb3.6 Mapping of structural dependencies among 

components 

How to model the structural dependencies among components (Yu et al., 2015; Kim et al., 2016; Baylis, Zhang and McAdams, 2018)? Open 

Pb3.7 Decomposition of the system into physical 

modules 

How to decompose a set of structural relationships into physical modules (Bonjour et al., 2009)? Open 

Pb3.8 Evaluation of modules How to evaluate clustering solutions (Jiao and Tseng, 1999a)? Open 

Pb3.9 Classification of modules How to classify modules for product configuration structure (Rai and Allada, 2003)? Open 

Pb3.10 Building of the MBPF configuration structure How to build a hierarchical structure for end product configuration (Li, Huang and Newman, 2008)? Open 

Pb3.11 Evaluation of module-based product family 

design 

How to evaluate product families as a whole and generate measures of deviation from the ideal (Otto and Hölttä-Otto, 2007)? Open 

Pb4.1 Definition and modeling of configuration 

criteria 

What criteria to use for modeling the combinatorial and parametric problem (Li, Huang and Newman, 2008; Li and Huang, 2009)? Open 

Pb4.2 Reduction of configuration design space How to reduce the configuration design space (Zhu et al., 2010)? Open 

Pb4.3 Combination of modules to generate product 

family variants 

How to determine the right combination of modules to formulate the product family variants (Xiong, Du and Jiao, 2018)? Open 

(continued) 
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Table A2. (continued) 

Id. Codes Definition / Function Type 

Pb4.4 Scaling of modules' 

parameters 

How to determine the parameters of scalable modules compounding the product family variants (Xiao et al., 2018)? Open 

Pb4.5 Representation of a product 

family variants 

How to represent the product family variants resulting from the combination process (Du, Jiao and Tseng, 2001; Li, Huang and Newman, 2008; Li and 

Huang, 2009)? 

Open 

Cti Criteria:     

Ct1 Utility The level of users’ satisfaction with a product (Yoshimura and Takeuchi, 1994). Open 

Ct2 Cost The amount of expenditure incurred to produce a product (Wouters and Morales, 2014). Open 

Ct3 Commonality The sharing of intellectual and material assets across products to minimize manufacturing complexity (Erens and Verhulst, 1997). Open 

Ct4 Redesign effort The amount of redesign effort required for future designs of the product (Martin and Ishii, 2002). Open 

Ct5 Interaction or coupling The strength of coupling between the components in a product (Martin and Ishii, 2002). Open 

Ct6 Modularity The decomposition of a system into independent modules that can be treated as logical units (Newcomb, Bras and Rosen, 1998). Open 

Ct7 Quality The state of being free from defects (Chan and Wu, 2002). Open 

Ct8 Serviceability The degree to which the servicing of a product can be accomplished (Otto and Hölttä-Otto, 2007). Open 

Ct9 Environmental The possible adverse effects resulting from the product life-cycle (Yang, Yu and Jiang, 2014). Open 

Ct10 Lead time The time between the initiation and completion of a production process (Antunes et al., 2008). Open 

Ct11 Strategic The relationship between the business environment and product architecture (Otto and Hölttä-Otto, 2007). Open 

Ct12 Demand The quantity of a product the customer intends to purchase (Antunes et al., 2008). Open 

Ct13 Profit The economic benefit of a product to an enterprise (Dong, Shao and Xiong, 2011; Chen, Hoyle and Wassenaar, 2013). Open 

Ct14 Price The amount of money the customer is willing to pay for a product (Cox and Schleier, 2010). Open 

Ct15 Variety The level of distinctiveness of the product’s offering in the marketplace (Chen, Hoyle and Wassenaar, 2013). Open 

Pti Product classification:   

Pt1 Consumer goods (durables) Consist of durable products that people buy for their use (OECD, 2008). Categorical 

Pt2 Intermediate goods Comprehend those products used in the production of other goods (OECD, 2008). Categorical 

Pt3 Capital goods Consist of machines and equipment used to produce products or provide services (OECD, 2008). Categorical 

Pt4 Military and defense goods Consist of the equipment used in defensive tactics that seek to negate the enemy's offensive tactics (Pate, Patterson and German, 2012). Categorical 

Eti Evaluation approach:   

Et1 Observational (i) Case study elements: study the existing or created artifact in-depth in the business environment. (ii) Field study: monitor the use of the artifact in 

multiple projects (Dresch, Lacerda and Antunes Jr, 2015). 

Categorical 

Et2 Analytical (i) Static analysis: examine the structure of the artifact for static qualities. (ii) Architecture analysis: study the fit of the artifact in the technical architecture 

of the complete technical system. (iii) Optimization: demonstrate the optimal properties inherent to the artifact or demonstrate the limits of the optimization 

in artifact behavior. (iv) Dynamic analysis: study the artifact during use to evaluate its dynamic qualities (Dresch, Lacerda and Antunes Jr, 2015). 

Categorical 

Et3 Experimental (i) Controlled experiment: study the artifact in a controlled environment to determine its qualities. (ii) Simulation: execute the artifact with artificial data 

(Dresch, Lacerda and Antunes Jr, 2015). 

Categorical 

Et4 Testing (i) Functional test (black box): implement the artifact interfaces to discover potential failures and identify defects. (ii) Structural test (white box): perform 

coverage tests of some metrics for implementing the artifact (Dresch, Lacerda and Antunes Jr, 2015). 

Categorical 

Et5 Descriptive (i) Informed argument: use the information of knowledge bases (e.g., relevant research) to construct a convincing argument about the utility of the artifact. 

(ii) Scenarios: construct detailed scenarios for the artifact to demonstrate its utility (Dresch, Lacerda and Antunes Jr, 2015). 

Categorical 

Mi Methods:   

M1 Product family architecture 

(PFA) 

Characterizes customer needs and subsequently fulfills these needs by configuring and modifying well-established modules and components  (Jiao and 

Tseng, 1999a). 

Open 

M2 Product line commonality Presents an objective measure, called Product Line Commonality (PCI), to capture the level of component commonality in a product family (Kota, 

Sethuraman and Miller, 2000). 

Open 

M3 Generic product structure 

(GPS) 

Characterizes the source of variety based on the hierarchical decomposition of product structures (Du, Jiao and Tseng, 2001). Open 

M4 Modular product architecture Decomposes a set of products into shared and individual modules based on functional modeling (Dahmus, Gonzalez-Zugasti and Otto, 2001). Open 

(continued) 
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Table A2. (continued) 

Id. Codes Definition / Function Type 

M5 Design for variety (DFV) Presents two indices to measure a product’s architecture. The first index is the Generational Variety Index (GVI), a measure for redesign effort 

required for future designs of the product. The second index is the Coupling Index (CI), a measure of the coupling among the product 

components (Martin and Ishii, 2002). 

Open 

M6 Modularisation function Analyses the degree of modularity of product architecture by taking into consideration the following variables: number of components, the degree of 

coupling, and the substitutability of new-to-the-firm components  (Mikkola and Gassmann, 2003). 

Open 

M7 Agent-based modular product family 

design 

Performs a multi-objective optimization using a multi-agent framework to determine the Pareto-design solutions for a given module set, then 

performs a post-optimization analysis that employees the quality loss function to determine the optimal platform level for a related set of product 

families and their variants (Rai and Allada, 2003). 

Open 

M8 Integrated modular product design Consists of an integrated method that includes additional tools and stages for complete modular architecture design. The borders of the modular 

design process are expanded by adding strategic issues, appropriateness to modularity, the degree of modularity and modularity strategies (Asan, 

Polat and Serdar, 2004). 

Open 

M9 Robust modular product family design Determines the optimal control factors and the suitable periods for designing robust product families by using a modified Taguchi method (Jiang 

and Allada, 2005). 

Open 

M10 Functional modeling of modular 

product family design 

Supports the identification of both shared and individual behavioral modules across a family of products for module-based product family 

design  (Zhang, Tor and Britton, 2006). 

Open 

M11 Comprehensive evaluation of product 

family commonality 

Evaluates the design of a product family on a 0–1 scale based on the components in each product, their size, geometry, material, manufacturing 

process, assembly, cost, and the allowed diversity in the family (Thevenot and Simpson, 2007). 

Open 

M12 Multi-criteria assessment for product 

platforming 

Presents a platform concept evaluation tool that is multi-criteria in nature, and scalable to include various alternative criteria as appropriate (Otto 

and Hölttä-Otto, 2007). 

Open 

M13 Design for commonality and diversity 

method (DCDM) 

Manages the inherent trade-off between commonality and diversity during all stages of the product family design process  (Thevenot et al., 2007). Open 

M14 Improving an existing product family Identifies sources of improvement to support product family redesign (Alizon, Shooter and Simpson, 2007). Open 

M15 Genetic algorithm-based modules 

identification 

Solves the multi-objective optimization problem of identifying the constituent modules of a product family (Meng, Jiang and Huang, 2007). Open 

M16 Customer-need-motivated conceptual 

design for product portfolio planning 

Outlines platform and differentiating modules during the conceptual design stage of product development and plans a product portfolio before any 

embodiment design occurs (Stone et al., 2008). 

Open 

M17 Product platform concept development 

(PPCDM) 

Analyses the variation of technical requirements across the related products and identifies the common modules within the products  (Park et al., 

2008). 

Open 

M18 Cooperative coevolutionary algorithm 

for design of adaptative platform-based 

products 

Identifies an optimal product variant based on the adaptive product platform after giving customer requirements  (Li, Huang and Newman, 2008). Open 

M19 Dynamic approach to product 

architecture optimisation 

Determines the optimal product architecture configuration in the multiproduct hierarchy by directly incorporating what customers want in the design 

and formulation of a family of products (Tucker and Kim, 2008). 

Open 

M20 Optimal platform investment for 

product family design 

Suggests the optimal initial investment in the platform, the commonality level between variants, and the number of variants to be produced in order 

to maximize market coverage using both analytical and simulation techniques  (Zacharias and Yassine, 2008). 

Open 

M21 Multiobjective evolutionary 

optimization for adaptive product 

family design 

Accommodates multi-level commonality in adaptive product family optimization (Li and Huang, 2009). Open 

M22 Configuration performance prediction 

(CPP) 

Integrates rough set and neural network ensemble to predict the configuration performance of a modular product family (Zhu et al., 2010). Open 

M23 Proactive platform-based product 

family design 

Presents a framework to modularise PFA for variety generation and optimization of a family of products with rationalized commonality 

configuration (Liu, Wong and Lee, 2010). 

Open 

M24 GeMoCURE Combines several methods to allow designers to generate design solutions using modular concepts in a systematic manner  (Yan and Stewart, 2010). Open 
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M25 Evolvable modular platform product 

design 

Presents an evolvable modular platform flexible product decision model, which is based on the modular design concept and considers external 

environmental factors and customer demand situations  (Dong, Shao and Xiong, 2011). 

Open 

M26 The sharing decision and optimal 

clustering framework 

Identifies candidates for component sharing based on the functional description of each component and its IM score  (Arciniegas and Kim, 2011). Open 

M27 Product variants design model 

(PVDM) 

Generates new combinations of parts and components to form modules using hierarchical classification and cladistics (ElMaraghy and AlGeddawy, 

2012). 

Open 

M28 Hybrid valuation of product and 

project-related flexibility 

Determines an optimal flexibility level for product platform planning concerning both technical and financial real options (Jiao, 2012). Open 

M29 Optimal reconfigurable family design Optimizes the configuration of multi-mission aircraft families with reconfigurable and interchangeable components (Pate, Patterson and German, 

2012). 

Open 

M30 Modular product development through 

PBD and DFMA 

Integrates function-based modular product architecture, platform-based design, design for manufacture, and design for assembly to develop modular 

products (Emmatty and Sarmah, 2012). 

Open 

M31 An integrated approach to product 

family design 

Integrates several disparate tools into a framework to translate user needs and requirements into commonality specifications during product family 

design (Simpson et al., 2012). 

Open 

M32 An ISM, DEI, and ANP based 

approach for product family 

development 

Combines modularisation and market segmentation to develop optimal product families  (Hsiao et al., 2013). Open 

M33 Reactive products platform design Automatically redesigns product variants using physical commonality,  instead of evaluating alternate solutions provided by designers using 

commonality indices  (AlGeddawy and ElMaraghy, 2013). 

Open 

M34 Modular design of product families for 

quality and cost 

Optimizes the design of the single-level modules considering the quality and cost simultaneously  (Agard and Bassetto, 2013). Open 

M35 Flexible platform modular architecture 

design 

Combines flow analysis, design structure matrix (DSM), and fuzzy clustering in an integrated method for defining modular flexible platforms (Li et 

al., 2013). 

Open 

M36 Reduction of product platform 

complexity 

Reduces the product platform complexity based on a matrix representation of technical solutions versus product properties (Navarrete et al., 2013). Open 

M37 Platform-driven product planning Adapts existing methodologies that tackle different stages of product family development, in order to provide a comprehensive, systematic, and 

intuitive step-by-step approach to platform development  (Sahin-Sariisik et al., 2014). 

Open 

M38 Hybrid module generation algorithm Generates modules through an algorithm that balances both module independence and product similarity, allowing product similarity strategy to 

influence the coupling-driven architecture considerations (Borjesson and Hoelttae-Otto, 2014). 

Open 

M39 Reconfigurable system architecture Integrates modular architecture principles, selection algorithms, clustering algorithms, family product features, and functional system analysis in the 

product design process to obtain modular RMS (Mesa et al., 2014). 

Open 

M40 Modular eco-product family design Integrates eco-design with product family design by modularity  (Yang, Yu and Jiang, 2014). Open 

M41 Joint optimisation of product family 

configuration and scaling design 

Optimizes product family configuration and scaling design based on a Stackelberg game-theoretic model (Du, Jiao and Chen, 2014). Open 

M42 Predicting configuration performance 

of modular product family 

Predicts the configuration performance of a product family variant through the combination of principal component analysis (PCA) and support 

vector machine (SVM) (Meng et al., 2014). 

Open 

M43 Modular product multi-platform 

(MPMP) 

Optimally defines product platforms and families using the relatively new concept of assembly/disassembly (Hanafy and Elmaraghy, 2015). Open 

M44 Structure-oriented modular product 

platform planning 

Applies network theory and network analysis for the planning of modular product platforms  (Fan et al., 2015). Open 

M45 Eco-product family design Incorporates QFD with modularity for the end-of-life of a product family (Yu et al., 2015). Open 

M46 Technology roadmap modular 

deployment (TRM-MD) 

Combines two methods of modular design to transform the products listed on the roadmap into a list of modules, providing a new roadmap based on 

module releases  (Scalice et al., 2015). 

Open 

M47 Modular product family design Optimizes module combinations in order to derive final product variants (Adhitama and Rosenstiel, 2015). Open 

M48 Multi-principle module identification 

method for product platform design 

Uses an improved strength Pareto evolutionary algorithm (ISPEA-II) to address the multi-principle modules' identification (Wei et al., 2015). Open 
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M49 Comprehensive product platform 

planning (CP3) 

Designs both scale-based and modular product families  (Chowdhury et al., 2016). Open 

M50 Analysis of architectural complexity 

for product family and platform 

Assesses the architectural complexity of product platform and variant architectures  (Kim et al., 2016). Open 

M51 Systematic adaptable platform 

architecture design 

Proposes an adaptable platform methodology to solve systematic design for hierarchical platform architecture (Li et al., 2016). Open 

M52 A new methodology to cluster 

derivative product modules 

Maximizes the use of common product modules by considering platform-based derivative products and modular product design approaches to 

minimize the planning complexity in the supply chain, manufacturing, and service for derivative products (Aydin and Ulutas, 2016). 

Open 

M53 Hierarchical game joint optimisation 

for product family-driven modular 

design 

Identifies and groups components into independent modules through the combination of TSM and PFM within a coherent framework of hierarchical 

joint optimization (Ma et al., 2016). 

Open 

M54 Brownfield process (BfP)  Rationalizes the existing product variety towards a modular product family that enables product configuration (Pakkanen, Juuti and Lehtonen, 

2016). 

Open 

M55 An integrated approach to product 

family redesign using commonality 

and variety metrics 

Uses multiple product family metrics to establish an effective platform redesign strategy (Jung and Simpson, 2016). Open 

M56 Design of adaptable product platform Uses axiomatic design and sensitivity design structure matrix for identification of adaptable product platform (Cheng et al., 2017). Open 

M57 Modular platform optimisation Generates modules based on a modified graph-based decomposition algorithm, then selects the shared modules based on a cost-based priority 

method (Hou et al., 2017). 

Open 

M58 Development of sustainable platform 

for modular product family 

Defines the type of platform architecture (modular or integral) as well as provides design guidelines and checklists for the product designers 

(Shamsuzzoha and Helo, 2017). 

Open 

M59 An integrated framework for product 

line design for modular products 

Maximizes the product line design by taking into account the functional product attributes, customer demand, and product cost  (Goswami, Daultani 

and Tiwari, 2017). 

Open 

M60 Development of product platforms Supports platform development teams in modeling and configuring product families through a holistic object-oriented methodology (Johannesson et 

al., 2017). 

Open 

M61 Complexity cost management Quantifies the cost effects to support concept selection during modular product family design (Ripperda and Krause, 2017). Open 

M62 Product-family shared-component 

selection based on the consistency 

constraint function 

Selects shared components in modular platforms based on the collaborative optimization consistency constraint function  (Hou et al., 2018). Open 

M63 Coordinated optimisation of low-

carbon product family and its 

manufacturing process design 

Optimizes the low-carbon product family architecting (L-CPFA) and low-carbon manufacturing process configuration (L-CMPC)  (Xiao et al., 

2018). 

Open 

M64 A method for coupling analysis of 

association modules in product family 

design 

 Analyses coupled design for product family based on coupling incidence path and correlation impact degree  (Cheng, Xiao and Wang, 2018). Open 

M65 Low carbon oriented modular product 

platform planning 

Determines the modular planning in pursuit of maximizing the low carbon performance of the product with controlling the implementation 

probability of MP3 (Wang et al., 2018). 

Open 

M66 Propagation method Identifies the product architecture by propagating the constraints from the functional domain to the physical domain  (Bonjour et al., 2009). Open 

M67 Methodology for reconfigurable fixture 

architecture design 

Designs reconfigurable fixtures through a generic architecture design methodology (Bejlegaard et al., 2018). Open 

M68 Modular product platforming with 

supply chain postponement decisions 

Deals with the collaborative optimisation of modular product planning and supply chain postponement to maximize manufacturers’ profits (Xiong, 

Du and Jiao, 2018). 

Open 

M69 Product family platform selection 

using a Pareto front of maximum 

commonality and strategic modularity 

Identifies multiple component sharing options that lie along a Pareto front of maximum commonality and strategic modularity (Baylis, Zhang and 

McAdams, 2018). 

Open 
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M70 Value analysis for customizable 

modular product platforms 

Ranks alternative platform configurations according to customers’ preferences (Colombo et al., 2019). Open 

M71 Deciding the number of architectures Defines the total number of product architectures in a company developing a new product generation (Askhøj et al., 2019). Open 

M72 Module-based machinery design Conceptually designs modular machine families for reconfigurable manufacturing systems (Gauss, Lacerda and Sellitto, 2019). Open 

Ti Techniques:   

T1 Affinity diagram (KJ Method) Organizes ideas, problems, and solutions into related groups after a brainstorm (Shiba and Walden, 2007). Open 

T2 Multi pick-up method (MPM) Reduces many statements down to a manageable number (Shiba and Walden, 2007). Open 

T3 Survey Provides statistical descriptions of people by asking questions, usually of a sample (Forza, 2002). Open 

T4 Competitive analysis Identifies and quantifies the relative strengths and weaknesses for developing a competitive strategy (Aoussat et al., 1995). Open 

T5 Pareto chart Presents a vertical bar graph in which values are plotted in decreasing order of relative frequency from left to right (Ziegel and Tague, 1995). Open 

T6 Analytical hierarchy process (AHP) Compares alternatives through a scale of absolute judgments that represents, how much more, one element dominates another concerning a given 

attribute (Saaty, 2008). 

Open 

T7 Fuzzy clustering means (FCM) Assigns data points to clusters allowing each data point to belong to multiple clusters with varying degrees of membership (Bezdek, 1981). Open 

T8 Decomposition / classification tree 

(DCT) 

Depicts the functional view of a product family from an abstract level to individual instances (Jiao and Tseng, 1999a). Open 

T9 Zigzag decomposition Decomposes functional requirements (FR) and design parameters (DP) in the functional and the physical domains to create the FR and DP 

hierarchies (Suh, 2001). 

Open 

T10 Design matrix (DM) Represent the relationships between two domains, for example, between functions and physical design parameters (Suh, 2001). Open 

T11 Cluster identification algorithm Finds optimal machine cells and part families provided that the machine-part incidence matrix has the diagonal block structure embedded to solve 

standard group technology problems (Kusiak and Chow, 1987). 

Open 

T12 Modular structure Reveals the overall schematic of arranging modules for synthesizing a solution (Jiao, 1998) Open 

T13 Utility analysis Integrates demand analysis and design optimization to evaluate users’ satisfaction levels for products (Yoshimura and Takeuchi, 1994). Open 

T14 Pragmatic approach to product costing Estimates the cost of a product at early design stages where only a schematic design may be available (Jiao and Tseng, 1999b). Open 

T15 Cost-utility analysis Evaluates various building blocks according to their contribution to maintaining the economy of scale and providing functional variety (Jiao and 

Tseng, 1999a). 

Open 

T16 Fuzzy ranking approach Handles linguistic and ordinary quantitative information in solving the multicriteria decision-making problem faced during the early stage of the 

design process (Jiao and Tseng, 1998). 

Open 

T17 Configuration structure Describes how various product variants are derived from the combination of the physical modules and the interconnections across different levels of 

assembly (Jiao and Tseng, 1999a). 

Open 

T18 Function structure / diagram Graphically represents a functional model where its overall function is represented by a collection of sub-functions connected by the flows on which 

they operate (Stone and Wood, 2000). 

Open 

T19 Product line commonality index (PCI) Captures the level of component commonality in a product family (Kota, Sethuraman and Miller, 2000). Open 

T20 Generic bill-of-material (GBOM) Specifies all variants of a product family in a single hierarchical AND/OR tree structure (Li, Huang and Newman, 2008). Open 

T21 Dominant flow heuristic Defines a module based on a flow that passes through a set of sub-functions (Stone, Wood and Crawford, 2000). Open 

T22 Branching flow heuristic Defines a module based on branches of a parallel function chain (Stone, Wood and Crawford, 2000). Open 

T23 Conversion-transmission heuristic Defines a module based on a conversion sub-function or a conversion transmission pair or chain of sub-functions (Stone, Wood and Crawford, 

2000). 

Open 

T24 Modularity matrix Represents the functional outputs of modules for each product variant  (Dahmus, Gonzalez-Zugasti and Otto, 2001). Open 

T25 Pugh matrix Compares alternative design concepts against customer requirements, with evaluations, made relative to a base or favored concept, in a process 

independent of the HoQ analysis (Chen, Hoyle and Wassenaar, 2013). 

Open 

T26 Aggregate project plan Classify projects based on the number of resources they consume and on how they will contribute to the company’s product line (Wheelwright and 

Clark, 1992). 

Open 

T27 New product development map Presents the evolution of current product lines in a summarised yet strikingly clear way so that all functional areas in the organization can respond to 

a common vision (Wheelwright and Sasser, 1989). 

Open 

T28 Quality function deployment (QFD) Translates customer requirements into technical requirements for each stage of product development and production (Chan and Wu, 2002). Open 
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T29 Conjoint analysis Determines what combination of attributes is most influential on customers’ decision making (Chen, Hoyle and Wassenaar, 2013). Open 

T30 Generational variety index (GVI) Indicates the amount of redesign required for a component to meet the future market requirements (Martin and Ishii, 2002). Open 

T31 Design structure matrix (DSM) Represents the relationships among elements of the same domain, for example, between components (Browning, 2001). Open 

T32 Coupling index (CI) Indicates the strength of coupling among the components in a product (Martin and Ishii, 2002). Open 

T33 Modularisation function Measures the degree of modularity of product architecture by taking into consideration the following variables: number of components, the degree 

of coupling, and the substitutability of new-to-the-firm components (Mikkola and Gassmann, 2003). 

Open 

T34 Pareto optimization Optimizes solutions for problems involving more than one objective function simultaneously (Rai and Allada, 2003). Open 

T35 Agent-based models (ABM) Simulates the actions and interactions of autonomous agents in assessing their effects on the system as a whole (Rai and Allada, 2003). Open 

T36 Weighted sum for multi-objective 

optimization 

Scalarizes the set of objectives into a single objective by multiplying each objective with a user-supplied weight (Rai and Allada, 2003). Open 

T37 Quality loss function (QLF) Estimates the loss of quality resulting from the deviation of a product characteristic from its target value (Rai and Allada, 2003). Open 

T38 Modularity degree matrix Evaluates the willingness to the modularity of product architectures based on the measures of the degree of modularity and the appropriateness for 

modularity (Asan, Polat and Serdar, 2004). 

Open 

T39 Qualitative interviews Derives meaning through interpretations, not necessarily ‘facts’ from participant talk (Malhotra and Birks, 2007). Open 

T40 Design for "X" Provides system-level design guidelines for product development (Pahl et al., 2007). Open 

T41 Objective matrix Evaluates different types or dimensions of performance measures altogether by composing them into a single composite measure (Asan, Polat and 

Serdar, 2004). 

Open 

T42 Cross-impact systems and matrices 

(SMIC) 

Describes the potential modes of interaction between a given set of variables and the assessment of the strength of these interactions (Asan, Polat 

and Serdar, 2004). 

Open 

T43 Simplex model Solves linear programming problems (Hilier and Lieberman, 2015). Open 

T44 Robustness chart Evaluates the robustness of a product family in fulfilling the customer requirements over time (Jiang and Allada, 2005). Open 

T45 Market segmentation grid (MSG) Articulates leveraging platform strategies in a given market (Kumar, Chen and Simpson, 2009). Open 

T46 Comprehensive metric for 

commonality (CMC) 

Assesses the commonality of a product family based on the components in each product, their size, geometry, material, manufacturing process, 

assembly, cost, and the allowed diversity in the family  (Thevenot and Simpson, 2007). 

Open 

T47 Cost-worth metric Evaluates modules against cost and worth criteria (Otto and Hölttä-Otto, 2007). Open 

T48 Customer needs metric Measures how well the customer needs are met by the platform (Otto and Hölttä-Otto, 2007). Open 

T49 Carryover metric Measures how well a function can be incorporated into different products without change and no technology upgrades (Otto and Hölttä-Otto, 2007). Open 

T50 Common module metric Evaluates how well the modules are shared in a platform-based product family (Otto and Hölttä-Otto, 2007). Open 

T51 Specification variety metric Measures the relative number of functions with different specifications within a product family (Otto and Hölttä-Otto, 2007). Open 

T52 Partitioning for reliability metric Measures how far the number of modules is from this ideal in order to prevent errors (Otto and Hölttä-Otto, 2007). Open 

T53 Failure modes and effects analysis 

(FMEA) 

Identifies possible failures and estimates the related risks (Pahl et al., 2007). Open 

T54 Partitioning for service metric Measures how well the serviceable functions are isolated into modules (Otto and Hölttä-Otto, 2007). Open 

T55 AT&T model Assesses the environmental friendliness of a platform (Otto and Hölttä-Otto, 2007). Open 

T56 Ease of assembly metric Measures the effectiveness of a design from a purely assembly theoretical point of view (Otto and Hölttä-Otto, 2007). Open 

T57 Make-buy metric Measures the relative number of possible outsourced components within a product family (Otto and Hölttä-Otto, 2007). Open 

T58 Organizational alignment metric Demonstrates the degree of alignment of the architecture with the development organization (Otto and Hölttä-Otto, 2007). Open 

T59 Testability metric Evaluates if the value of the tested module corresponds precisely to field requirements (Otto and Hölttä-Otto, 2007). Open 

T60 Unknown isolation metric Evaluates how well the module's architecture can accommodate requirements changing (Otto and Hölttä-Otto, 2007). Open 

T61 Change potential number Estimates the readiness of the company to deal with the change as well as flexibility of the product (Otto and Hölttä-Otto, 2007). Open 

T62 Function and form alignment metric Measures the degree of function-form independence (Otto and Hölttä-Otto, 2007). Open 

T63 Interface flexibility metric Evaluates the redesign effort of different interaction types (Otto and Hölttä-Otto, 2007). Open 

T64 Interface adjustment factor (IAF) Indicates the unexpected interactions going through the interface of each module (Otto and Hölttä-Otto, 2007). Open 

T65 One DOF adjustments metric Quantifies the degree of freedom of product architectures that require service or swap-outs of modules (Otto and Hölttä-Otto, 2007). Open 

T66 Limited extremes metric Compares the new requirements of the architecture under development to the requirements of the current model in the market (Otto and Hölttä-Otto, 

2007). 

Open 
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T67 Commonality diversity index (CDI) Scores the difference between real and ideal trade-off within and across a family of products with different depths of analysis (Thevenot and 

Simpson, 2007). 

Open 

T68 Bill of materials (BOM) Represents the hierarchical structure of a product family in a tabulating form (Jiao and Tseng, 2000). Open 

T69 Value analysis Identifies unnecessary costs in a product and eliminates them without impairing its quality and efficiency (Alizon, Shooter and Simpson, 2007). Open 

T70 Core needs-based product platforms Identifies common modules (platforms) from the relationship between customer need frequency and customer need weight (Stone et al., 2008). Open 

T71 Instance bill-of-materials (IBOM) Represents a product variant derived from the corresponding platform (Li, Huang and Newman, 2008). Open 

T72 Genetic algorithm (GA) Finds optimized solutions to search problems based on the mechanism of natural selection and natural genetics  (Meng, Jiang and Huang, 2007). Open 

T73 Degree of variety (DV) Calculates the contribution of elements to the product variety  (Park et al., 2008). Open 

T74 Cooperative coevolutionary algorithm Imitates the coevolutionary process of two or more species that evolve while interacting with and adapting to each other (Li, Huang and Newman, 

2008). 

Open 

T75 Naïve Bayesian Model Builds a predictive model based on a fraction of customer survey data, used to train the computer learning model (Tucker and Kim, 2008). Open 

T76 Branch and bound algorithm Finds an optimal solution for mixed integer nonlinear programming problems with discrete and continuous variables (Tucker and Kim, 2008). Open 

T77 Data to Knowledge (D2K) Classifies the survey results and maps the data into one of several predefined classes (Tucker and Kim, 2008). Open 

T78 Gross margin Measurement of how effectively the company turns its revenue into profit (Cox and Schleier, 2010). Open 

T79 Generalized reduced gradient (GRG) 

algorithm 

Finds optimized solutions for nonlinear problems (Zacharias and Yassine, 2008). Open 

T80 Commonality degree (CD) Measures the commonality of multi-level variables of product family variants (Li and Huang, 2009). Open 

T81 Non-dominated sorting genetic 

algorithm (NSGA-II) 

Finds optimized solutions to search multi-objective problems based on the mechanism of natural selection and natural genetics (Li and Huang, 

2009). 

Open 

T82 Thebaud clustering algorithm Groups the components into clusters by minimizing the function of total coupling cost (Bonjour et al., 2009). Open 

T83 Recognizable matrix Specifies all variants of a product family and its configuration performance in a tabulating form (Zhu et al., 2010). Open 

T84 Confusion matrix Describes the classification accuracy by showing the predicted and actual classifications (Zhu et al., 2010). Open 

T85 Artificial neural network (ANN) Simulates the network of neurons that make up a human brain in order to make a machine learn things, recognize patterns, and make decisions in a 

human-like way (Zhu et al., 2010). 

Open 

T86 K-means clustering Classifies a given data set through a certain number of clusters fixed apriori (Zhu et al., 2010). Open 

T87 Attribute-module matrix (AMM) Depicts the coupling degree among product attributes and modules (Liu, Wong and Lee, 2010). Open 

T88 Commonality index (CI) Measures the overall level of commonality of a product family based on the commonality index of all platforming elements and their expected 

sharing degree (Liu, Wong and Lee, 2010). 

Open 

T89 Evolutionary dynamic weighted 

aggregation (EDWA) 

Finds optimized solutions to search multi-objective problems with a concave Pareto front based on the mechanism of natural selection and natural 

genetics (Liu, Wong and Lee, 2010). 

Open 

T90 Variety index (VI) Estimates the design variation or effort on modules to meet customer-perceived varieties (Liu, Wong and Lee, 2010). Open 

T91 Non-recurring engineering (NRE) cost Quantifies the one-time investment of the research, design, and testing of one new product (Liu, Wong and Lee, 2010). Open 

T92 Module identification function (MIM) Visually displays the strength of dependencies between components in a DSM (Yan and Stewart, 2010). Open 

T93 Module strength indicator (MSI) Indicates how robust a module is from a particular viewpoint (Yan and Stewart, 2010). Open 

T94 Decision tree Represents the branching structure of a decision process (Dong, Shao and Xiong, 2011). Open 

T95 Geometric Brownian motion (GBM) Models continuous-time stochastic trends subject to random noise (Dong, Shao and Xiong, 2011). Open 

T96 CPLEX optimizer Solves linear programming, mixed integer programming, quadratic programming, and quadratically constrained programming problems (Dong, 

Shao and Xiong, 2011). 

Open 

T97 Minimal description length (MDL) Tries to find the shortest valid descriptions for the data (Arciniegas and Kim, 2011). Open 

T98 Impact metric (IM) Captures the impact of changing a component in a given platform, combining the MDL representation for each component and the CI score 

(Arciniegas and Kim, 2011). 

Open 

T99 Cladogram Illustrates phylogenetic relationships and shows points at which various species are presumed to have diverged from common ancestral 

forms (ElMaraghy and AlGeddawy, 2012). 

Open 

T100 Liaison graph Depicts the physical relationship among components in a graphical formalism (ElMaraghy and AlGeddawy, 2012). Open 

T101 Real options analysis (ROA) Applies option valuation techniques to capital budgeting and strategic decisions (Jiao, 2012). Open 

T102 Probability of design success Measures the probability of a design parameter satisfying a given functional requirement (Suh, 1998). Open 

(continued) 



 

234 

 

Table A2. (continued) 

Id. Codes Definition / Function Type 

T103 Monte Carlo simulation Models probabilistic systems and establishes the odds for a variety of outcomes (Montgomery and Runger, 2011). Open 

T104 Stratified state aggregation Partitions a one-dimensional space at each time step, independent of the number of state variables (Jiao, 2012). Open 

T105 Multi-period option pricing model Allows multi-period views of the underlying asset price and the price of the option for multiple periods as well as the range of possible results for 

each period (Jiao, 2012). 

Open 

T106 Game theory Deals with the general features of competitive situations formally and abstractly (Hilier and Lieberman, 2015). Open 

T107 Multinomial logit (MNL) Predicts the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables 

(Chen, Hoyle and Wassenaar, 2013). 

Open 

T108 Financial real option Consists of a payoff function of exercising a financial option on its expiration date (Jiao, 2012). Open 

T109 Focus group Consists of a gathering of deliberately selected people who participate in a planned discussion intended to elicit consumer perceptions about a topic 

or area of interest in an environment that is non-threatening and receptive (Malhotra and Birks, 2007). 

Open 

T110 Product family penalty function 

(PFPF) 

Measures the dissimilarity among the different parameter settings for each design variable used to define the product family (Simpson et al., 2012). Open 

T111 Hierarchy graph Illustrates the hierarchical relationships among the elements retrieved from a decomposed DSM (Hsiao et al., 2013). Open 

T112 Disassembly effort index (DEI) Evaluates the assembly relationships among components (Hsiao et al., 2013). Open 

T113 Analytic network process (ANP) Consists of a generalization of AHP, which represents a decision-making problem as a network of elements (including criteria and other 

alternatives) that are grouped into clusters (Hsiao et al., 2013). 

Open 

T114 Sensitivity analysis Determines how different values of an independent variable affect a dependent variable under a given set of assumptions (Hsiao et al., 2013). Open 

T115 Simulated annealing Approximates global optimization in an ample search space for an optimization problem  (Agard and Bassetto, 2013). Open 

T116 Scaling by minimizing a convex 

function (SMACOF) 

Transforms the DSM constituents into two-dimensional vectors (Li et al., 2013). Open 

T117 Partition coefficient (PC) Evaluates the clustering quality of a decomposed DSM (Moon, Kumara and Simpson, 2006). Open 

T118 Dendrogram Illustrates the fusions or divisions which have been made at each successive stage of hierarchical classification (Selim, Askin and Vakharia, 1998). Open 

T119 Modular function deployment Uses three interlinked matrices to describe customer requirements, engineering specifications, and product family strategy (Borjesson and Hoelttae-

Otto, 2014). 

Open 

T120 R-IGTA algorithm Generates modules through simultaneously clustering similarity-based (MIM) and coupling-based (DSM) matrices  (Borjesson and Hoelttae-Otto, 

2014). 

Open 

T121 Algorithm for modular principle 

selection 

Establishes the specific modular architecture alternatives for each subfunction proposed in the original functional structure (Mesa et al., 2014). Open 

T122 Average linkage clustering algorithm 

(ALCA) 

Forms machine cells for cellular manufacturing applications based on the similarity coefficients (Seifoddini, 1989). Open 

T123 Strength Pareto evolutionary algorithm 

(SPEA-II) 

Locates and maintain a front of non-dominated solutions, ideally a set of Pareto optimal solutions, by using an evolutionary process to explore the 

search space (Jiao, 2012). 

Open 

T124 Environmental performance metric Denotes the environmental performance of a product based on its reusability and recyclability (Yang, Yu and Jiang, 2014). Open 

T125 Shared surplus measure Expresses the ratio between the customer-perceived product utility and the costs to produce it (Jiao and Zhang, 2005). Open 

T126 Principal component analysis (PCA) Reduces the dimensionality of multivariate data while preserving the relevant information as much as possible (Meng et al., 2014). Open 

T127 Support vector machine (SVM) Predicts the unknown outputs of a system based on a training dataset (Meng et al., 2014). Open 

T128 Breadth-first search (BSF) Searches for tree or graph data structures (Fan et al., 2015). Open 

T129 Node degree metric Indicates the number of links related to a specific node that composes a product structure (Fan et al., 2015). Open 

T130 Usage time metric Computes the number of times a specific module is used in a product family (Fan et al., 2015). Open 

T131 Number of different products metric Computes the number of different products that use a specific module in a product family (Fan et al., 2015). Open 

T132 Node betweenness metric Measures the number of shortest paths via a particular node in the network (Fan et al., 2015). Open 

T133 Degree of variety of a module (DVM) Classifies modules into common or different modules (Yu et al., 2015). Open 

T134 Platform priority matrix (PPM) Grades the strategic importance of product modularity drivers (Scalice et al., 2015). Open 

T135 Module indication matrix (MIM) Captures the strategic intent of technical solutions (Borjesson and Hoelttae-Otto, 2014). Open 

T136 Improved strength Pareto evolutionary 

algorithm (ISPEA-II) 

Locates and maintain a front of non-dominated solutions, ideally a set of Pareto optimal solutions, by using a more effective evolutionary process 

than SPEA-II, to explore the search space (Wei et al., 2015). 

Open 
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Table A2. (continued) 

Id. Codes Definition / Function Type 

T137 Fuzzy ranking mechanism Extracts the best compromise solution from the Pareto-optimal front (Wei et al., 2015). Open 

T138 Mathematical modeling Constructs a mathematical model that represents the essence of the problem to be solved (Hilier and Lieberman, 2015). Open 

T139 Multi-objective particle swarm 

optimization algorithm (MOPSO) 

Solves multi-objective problems by moving a collection of particles that move around a continuous search space influenced by their own best past 

location and the best past location of the whole swarm or a close neighbor (Jiao, 2012). 

Open 

T140 Mixed-discrete particle swarm 

optimization algorithm (MDPSO) 

Solves multi-objective problems by moving a collection of particles that move around a discrete or continuous search space influenced by their own 

best past location and the best past location of the whole swarm or a close neighbor (Chowdhury et al., 2016). 

Open 

T141 Structural complexity metric (SC) Captures the overall complexity of components and interfaces in the product platforms or variants (Kim et al., 2016). Open 

T142 Trapezoidal fuzzy arithmetic Translates the linguistic terms into fuzzy numbers to support the quantitative indices calculation (Li et al., 2016). Open 

T143 Change propagation index (CPI) Measures the degree of physical change propagation caused by an element when an external change is imposed on the system (Suh et al. 2007). Open 

T144 Scalable index (SI) Measures the degree of scaling parameters of a component (Li et al., 2016). Open 

T145 Clonal selection algorithm (CSA) Clusters data by imitating the principles of clonal selection in an immune system (Aydin and Ulutas, 2016). Open 

T146 Functional coupling Indicates how strong is the functional relationship among components (Ma et al., 2016). Open 

T147 Technological coupling Indicates how strong is the technological relationship among components (Ma et al., 2016). Open 

T148 Structural coupling Indicates how strong is the structural relationship among components (Ma et al., 2016). Open 

T149 Sourcing cost Calculates the sourcing cost associated to a modular product family (Ma et al., 2016). Open 

T150 Process cost Calculates the process cost associated to a modular product family (Ma et al., 2016). Open 

T151 Company strategic landscape (CSL) Presents the main elements of a business environment that relate to the product structuring (Pakkanen, Juuti and Lehtonen, 2016). Open 

T152 Cause-and-effect diagram Identifies possible causes for an effect or problem (Pakkanen, Juuti and Lehtonen, 2016). Open 

T153 Brainstorming Produces ideas or ways of solving problems through a spontaneous group of discussion (Pakkanen, Juuti and Lehtonen, 2016). Open 

T154 Product family master plan (PFMP) Provides an object-oriented modeling formalism for product families and highlights customer, engineering, and part views (Pakkanen, Juuti and 

Lehtonen, 2016). 

Open 

T155 K-matrix Maps the relationship between technical and customer views (Pakkanen, Juuti and Lehtonen, 2016). Open 

T156 Product structuring blueprint (PSBP) Describes the name of the product family in question, the generic elements it includes, the solution principles for each generic element and type of 

each solution and variation needs (Pakkanen, Juuti and Lehtonen, 2016). 

Open 

T157 Business impact analysis (BIA) Gives a rough estimate of profit in a workshop environment (Pakkanen, Juuti and Lehtonen, 2016). Open 

T158 Graph-based decomposition Graphically represents the components and their interactions (Hou et al., 2017). Open 

T159 Structural stiffness Measures the displacement of a given structural element (Hou et al., 2017). Open 

T160 Manufacturability Measures manufacturability of a given model based on the total expenses of its sub-components (Hou et al., 2017). Open 

T161 Assembling ability Measures the effectiveness of a design from an assembly point of view (Hou et al., 2017). Open 

T162 Design checklist Supports the decision-making on what type of platform architecture (modular or integral) should be developed (Shamsuzzoha and Helo, 2017). Open 

T163 Aggregate manufacturing cost (AMC) Represents the manufacturing cost incurred in offering the optimal number of product profiles (Goswami, Daultani and Tiwari, 2017). Open 

T164 Penalty for violating time to the market 

constraint (PTMC) 

Represents the penalty in case the manufacturer is not able to meet the time to market requirements (Goswami, Daultani and Tiwari, 2017). Open 

T165 Customer satisfaction loss cost (CSLC) Refers to the loss incurred in offering an existing product attribute far away from the optimal level (Goswami, Daultani and Tiwari, 2017). Open 

T166 Common index (CI) Measures the degree of sharing parameters of a component (Li et al., 2016). Open 

T167 Product premium index Measures the degree of market penetration based on the product’s attribute level (Goswami, Daultani and Tiwari, 2017). Open 

T168 CAx activity Builds conceptual parameterized CAD & CAE models and integrates it with PLM & PDM software (Johannesson et al., 2017). Open 

T169 Time-driven activity-based costing 

(TDABC) 

Estimates the cost of a product based on the unit cost of supplying capacity and the time required to perform it (Kaplan and Anderson, 2007). Open 

T170 Cohesion degree Measures the similarity among physical components within modules (Cheng, Xiao and Wang, 2018). Open 

T171 Coupling degree Represents the degree of the interaction between modules (Cheng, Xiao and Wang, 2018). Open 

T172 Correlation impact degree Describes the impact of one module on another module (Cheng, Xiao and Wang, 2018). Open 

T173 Instability index Evaluates the change probability of a component in the future generation (Wang et al., 2018). Open 

T174 Change propagation tree Depicts the possible change propagation path (Wang et al., 2018). Open 

T175 Comprehensive connection Grades the structural interaction among components (Wang et al., 2018). Open 
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236 

 

Table A2. (continued) 

Id. Codes Definition / Function Type 

T176 Material similarity Grades the materials' compatibility among components (Wang et al., 2018). Open 

T177 Maintenance similarity Grades the maintenance similarity among components (Wang et al., 2018). Open 

T178 Manufacturing technology and process 

similarity 

Grades the manufacturing technology and process similarity among components (Wang et al., 2018). Open 

T179 Low carbon performance Measures the performance of low carbon in modular planning (Wang et al., 2018). Open 

T180 Adaptive memetic algorithm (AMA) Combines the global and local search through GA to explore the solution space (Wang et al., 2018). Open 

T181 Total constant commonality index 

(TCCI) 

Measures the absolute level of component commonality in a product family (Thevenot and Simpson, 2007). Open 

T182 Modularity score Calculates the score of clustering solution for each product variant in the family (Baylis, Zhang and McAdams, 2018). Open 

T183 Venn diagram Visually illustrates the platforming strategy (Baylis, Zhang and McAdams, 2018). Open 

T184 Jaccard similarity coefficient Measures the similarity between sample sets (Mesa et al., 2014). Open 

T185 Ward’s linkage algorithm Groups components into clusters by minimizing within-group dispersion based on a classical sum-of-squares criterion (Everitt et al., 2011). Open 

T186 Morphology analysis Creates alternative architectures through the modules' combination (Ko and Kuo, 2010). Open 

T187 Expectation maximization clustering Assumes the data set can be modeled as a linear combination of multivariate normal distributions and finds the distribution parameters that 

maximize a model quality measure (Abbas, 2008). 

Open 

T188 Descriptive statistics Describes the measures of central tendency and variability of a given data set (Montgomery and Runger, 2011). Open 

T189 Requirements list Lists the product development requirements into a single document (Pahl et al., 2007). Open 

T190 Classification scheme Serves as catalog during the searching for design solutions (Pahl et al., 2007). Open 

T191 Elimination and preference Selects design solutions through multicriteria decision-making (Pahl et al., 2007). Open 

T192 Modularity Index (MI) Evaluates modularity in product architectures (Jung and Simpson, 2017). Open 

T193 Adherence index Indicates the level of utilization of basic, auxiliary, and adaptive modules within a module-based machine variant (Gauss, Lacerda and Sellitto, 

2019) 

Open 
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Table A3. Structured classes of design problems. 

Classes of    

design problems 

Design 

problems 

Artifacts Evaluation 

approach 

Product 

classification 

Primary 

studies Techniques Methods 

Cp1 

Pb1.1 

T3 
M8 

Et1 

Pt1 R8 

M37 
Pt2 

R37 

T4 M1 R1 

T26 
M5 Et5 

Pt1 

R5 
T27 

T38 M8 Et1 R8 

T44 M9 
Et5 

R9 

T58 M12 Pt1, Pt2, Pt3 R12 

T79 M20 

Et1 

Pt1 
R20 

T134 M46 R46 

T151 
M54 Pt3 R54 

T152 

T162 M58 Pt2 R58 

N/A M70 
Pt1 

R70 

Pb1.2 

T3 M32 R32 

T5 M1 Pt2 R1 

T7 M31 Et5 Pt4 R31 

T10 M27 Et1 
Pt1 

R27 

T45 

M11 
Et5 

R11 

M31 Pt4 R31 

M37 Et1 
Pt2 

R37 

M47 Et5 R47 

M71 

Et1 

Pt3 R71 

T77 M19 

Pt1 

R19 

T86 
M32 R32 

T113 

N/A 
M44 Pt2 R44 

M51 Et5 Pt3 R51 

T185 M70 

Et1 

Pt1 R70 

Cp2 

Pb2.1 

T3 

M19 Pt1 R19 

M54 
Pt3 

R54 

M56 R56 

M70 Pt1 R70 
T18 

T28 M30 Pt2 R30 

T29 M70 Pt1 R70 

T39 

M8 Pt1 R8 

M16 Pt4 R16 

M30 Pt2 R30 

M32 Pt1 R32 

T109 M30 
Pt2 

R30 

Pb2.2 

T3 

M1 R1 

M8 Pt1 R8 

M16 Pt4 R16 

M41 

Pt2 

R41 

T6 
M1 R1 

M48 R48 

T29 M41 R41 

Pb2.3 

T1 M1 R1 

T2 M2 
Et5 

Pt1 R2 

T3 M72 

Pt3 

R72 

T6 M39 
Et1 

R39 

T10 M56 R56 

T18 

M4 Et5 

Pt1 

R4 

M8 Et1 R8 

M9 
Et5 

R9 

M10 Pt3 R10 

M14 

Et1 

Pt1 R14 

M15 Pt2 R15 

M16 Pt4 R16 

M20 
Pt1 

R20 

M23 R23 

M24 Pt3 R24 

M30 Pt2 R30 

M39 Pt3 R39 

M46 Pt1 R46 

M60 Pt2 R60 

M72 Et5 Pt3 R72 
T21 

T22 

T23 
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Classes of    

design problems 

Design 

problems 

Artifacts Evaluation 

approach 

Product 

classification 

Primary 

studies Techniques Methods 

Cp2 

 

Pb2.3 

 
 

T28 

M5 

Et1 

 

Pt1 

R5 

M17 R17 

M45 R45 

M55 R55 

T39 M66 Pt2 R66 

T121 M39 

Pt3 

R39 

N/A 
M54 R54 

M67 R67 

Pb2.4 

T28 M65 
Pt1 

R65 

N/A 
M9 Et5 R9 

M67 

Et1 Pt3 

R67 

Pb2.5 

T10 
M39 R39 

M67 R67 

T18 

M4 Et5 
Pt1 

R4 

M8 Et1 R8 

M10 Et5 Pt3 R10 

M14 

Et1 

Pt1 R14 

M15 Pt2 R15 

M16 Pt4 R16 

M20 
Pt1 

R20 

M23 R23 

M24 Pt3 R24 

M30 

Pt2 

R30 

T31 M66 R66 

Pb2.6 

T7 M1 R1 

T28 

M17 

Pt1 

R17 

M20 R20 

M45 R45 

T29 M5 Et5 R5 

T86 
M56 Et1 

Pt3 

R56 

M67 
 R67 

T122 
M39 

 
R39 

T184 
 

T187 
M72 Et5 Pt3 R72 

T188 

Pb2.7 

T8 
M1 Et1 Pt2 R1 

M72 

Et5 

Pt3 R72 

T18 

M2 

Pt1 

R2 

M4 R4 

M8 

Et1 

R8 

M24 Pt3 R24 

M30 
Pt2 

R30 

M37 R37 

M40 
Pt1 

R40 

M46 R46 

M51 Et5 

Pt3 

R51 

T118 M39 Et1 R39 

T189 M72 Et5 R72 

Cp3 Pb3.1 

T19 M55 Et1 
Pt1 

R55 

T30 

M5 Et5 R5 

M15 Et1 Pt2 R15 

M31 Et5 Pt4 R31 

M55 Et1 

Pt1 

R55 

T32 

M5 Et5 R5 

M17 Et1 R17 

M26 
Et5 

R26 

M31 Pt4 R31 

M53 

Et1 

Pt1 R53 

T70 M16 Pt4 R16 

T73 
M17 

Pt1 

R17 

M45 R45 

T90 
M23 R23 

T91 

T97 
M26 

Et5 
R26 

T98 

T110 M31 Pt4 R31 

T112 
M32 

Et1 

Pt1 
R32 

T114 

T124 M40 R40 

T129 

M44 Pt2 R44 
T130 

T131 

T132 
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Table A3. (continued) 

Classes of    

design problems 

Design 

problems 

Artifacts Evaluation 

approach 

Product 

classification 

Primary 

studies Techniques Methods 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
 

Cp3 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

  

  
  

  

  
Pb3.1 

  

  
  

  

  
  

  

T133 M45 Et1 
Pt1 

R45 

T138 
M7 Et5 R7 

M56 

Et1 

Pt3 R56 

T147 

M53 Pt1 R53 

T148 

T149 

T150 

T146 

T159 
M57 

Pt2 

R57 

M62 R62 

T160 
M57 R57 

T161 

T169 M61 Et5 

Pt3 

R61 

T170 

M64 Et1 R64 T171 

T172 

T175 

M65 Et1 Pt1 R65 

T176 

T177 

T178 

T179 

N/A M30 

Et1 

Pt2 
R30 

Pb3.2 

T9 

M1 R1 

M56 

Pt3 

R56 

M67 R67 

M72 Et5 R72 

T153 M54 

Et1 

R54 

N/A M60 Pt2 R60 

T186 M71 

Pt3 

R71 

T190 
M72 Et5 R72 

T191 

Pb3.3 

T10 

M1 Et1 Pt2 R1 

M5 Et5 Pt1 R5 

M15 
Et1 

Pt2 R15 

M17 

Pt1 

R17 

M26 Et5 R26 

M27 

Et1 

R27 

M36 R36 

M45 R45 

M48 Pt2 R48 

M56 Pt3 R56 

M66 Pt2 R66 

M72 

Et5 

Pt3 R72 

T24 

M4 
Pt1 

R4 

M9 R9 

M10 Pt3 R10 

M40 

Et1 

Pt1 R40 

M71 Pt3 R71 

T28 
M55 

Pt1 

R55 

M65 R65 

T31 M8 R8 

T119 M38 R38 

T155 M54 Pt3 R54 

Pb3.4 

T11 
M1 Pt2 R1 

M72 
Et5 

Pt3 R72 

T21 

M4 

Pt1 

R4 

M8 Et1 R8 

M9 
Et5 

R9 

M10 Pt3 R10 

M16 

Et1 

Pt4 R16 

M20 
Pt1 

R20 

M23 R23 

M30 Pt2 R30 

M46 Pt1 R46 

M51 
Et5 

Pt3 R51 

T22 

M4 

Pt1 

R4 

M8 Et1 R8 

M9 
Et5 

R9 

M10 Pt3 R10 

M16 

Et1 

Pt4 R16 

M20 
Pt1 

R20 

M23 R23 

M30 Pt2 R30 
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Table A3. (continued) 

Classes of    

design problems 

Design 

problems 

Artifacts Evaluation 

approach 

Product 

classification 

Primary 

studies Techniques Methods 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

Cp3 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 

 

 

Pb3.4 

T22 
M46 Et1 Pt1 R46 

M51 
Et5 

Pt3 R51 

T23 

M4 

Pt1 

R4 

M8 Et1 R8 

M9 
Et5 

R9 

M10 Pt3 R10 

M16 

Et1 

Pt4 R16 

M20 
Pt1 

R20 

M23 R23 

M30 Pt2 R30 

M46 Pt1 R46 

M51 Et5 Pt3 R51 

T72 M40 

Et1 

Pt1 
R40 

T120 M38 R38 

T136 M48 Pt2 R48 

Pb3.5 

T12 M1 Pt2 R1 

T40 
M8 Pt1 R8 

M30 Pt2 R30 

N/A 

M5 Et5 Pt1 R5 

M16 Et1 Pt4 R16 

M51 Et5 

Pt3 

R51 

M54 

Et1 

R54 

M72 R72 

Pb3.6 

T6 M15 Pt2 R15 

T31 

M5 
Et5 

Pt1 

R5 

M9 R9 

M14 

Et1 

R14 

M15 Pt2 R15 

M17 Pt1 R17 

M24 Pt3 R24 

M25 
Et5 

Pt1 

R25 

M26 R26 

M27 Et1 R27 

M31 Et5 Pt4 R31 

M32 

Et1 

Pt1 R32 

M35 Pt3 R35 

M38 
Pt1 

R38 

M45 R45 

M48 
Pt2 

R48 

M50 R50 

M52 

Pt1 

R52 

M53 R53 

M55 R55 

M64 Pt3 R64 

M65 Pt1 R65 

M66 Pt2 R66 

M67 Pt3 R67 

M69 

Pt1 

R69 

T100 

M27 R27 

M33 Et5 R33 

M65 

Et1 

R65 

T158 M57 Pt2 R57 

T174 M65 Pt1 R65 

Pb3.7 

T7 
M35 Pt3 R35 

M45 
Pt1 

R45 

T11 M8 R8 

T72 

M15 Pt2 R15 

M24 Pt3 R24 

M26 Et5 

Pt1 

R26 

M27 

Et1 

R27 

M53 R53 

T81 M57 
Pt2 

R57 

T82 
M66 R66 

M69 

Pt1 

R69 

T99 

M27 R27 

M33 Et5 R33 

M67 

Et1 

Pt3 R67 

T115 M34 Pt2 R34 

T116 M35 Pt3 R35 

T118 M36 

Pt1 

R36 

T120 M38 R38 

T135 M46 R46 

T136 M48 Pt2 R48 
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Classes of    

design problems 

Design 

problems 

Artifacts Evaluation 

approach 

Product 

classification 

Primary 

studies Techniques Methods 

 

 
 

 

 
 

 
 

 

 
 

 

 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

Cp3 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

Pb3.7 

T145 M52 

Et1 

Pt1 

R52 

T180 M65 R65 

N/A 

M32 R32 

M60 Pt2 R60 

M64 Pt3 R64 

 

 
Pb3.8 

T3 M37 

Pt2 

R37 

T13 
M1 R1 

T14 
M72 Pt3 R72 

T15 
M1 Pt2 R1 

M72 Pt3 R72 

T16 M1 Pt2 R1 

T47 

 
M12 

 

 

Et5 

 

 
Pt1, Pt2, Pt3 

 

 

 
R12 

 

 

T48 

T49 

T50 

T51 

T52 

T53 

T54 

T55 

T56 
M30 Et1 Pt2 R30 

T57 

M12 Et5 Pt1, Pt2, Pt3 R12 

T59 

T60 

T61 

T63 

T64 

T65 

T93 M24 

Et1 

Pt3 
R24 

T117 M35 R35 

T137 M48 Pt2 R48 

T192 M72 Pt3 R72 

Pb3.9 

T3 

M51 Et5 Pt3 R51 T7 

T24 

T74 M62 Et1 Pt2 R62 

T90 M51 
Et5 

Pt3 R51 

T99 
M33 Pt1 R33 

M67 Et1 

Pt3 

R67 

T142 

M51 Et5 R51 
T143 

T144 

T166 

T173 M65 Et1 
Pt1 

R65 

N/A 

M4 Et5 R4 

M44 

Et1 

Pt2 R44 

M52 Pt1 R52 

M54 Pt3 R54 

M57 

Pt2 

R57 

M60 R60 

Pb3.10 

T8 
M1 R1 

M72 Pt3 R72 

T17 

M1 Pt2 R1 

M11 Et5 
Pt1 

R11 

M23 

Et1 

R23 

M24 Pt3 R24 

T20 

M3 Pt2 R3 

M7 Et5 Pt1 R7 

M18 
Et1, Et3 Pt3 

R18 

M21 R21 

T31 M49 Et5 Pt4 R49 

T87 M23 

Et1 

Pt1 R23 

T92 M24 Pt3 R24 

T111 M32 Pt1 R32 

T128 M44 Pt2 R44 

T154 
M54 Pt3 R54 

T156 

T168 M60 Pt2 R60 

T183 M69 

Pt1 

R69 

Pb3.11 
T19 M2 

Et5 
R2 

T25 M4 R4 
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Classes of    

design problems 
Design 

problems 

Artifacts Evaluation 

approach 

Product 

classification 

Primary 

studies Techniques Methods 

Cp3 Pb3.11 

T33 M6 

Et1 

Pt3 R6 

T41 
M8 

Pt1 

R8 
T42 

T46 
M11 

Et5 

R11 

M13 R13 

T47 

M12 Pt1, Pt2, Pt3 R12 T62 

T66 

T67 
M13 

Pt1 
R13 

M14 

Et1 

R14 

T141 M50 Pt2 R50 

T157 M54 Pt3 R54 

N/A 
M60 Pt2 R60 

M67 
Pt3 

R67 

T193 M72 R72 

Cp4 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

 

 
Pb4.1 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

T14 M28 Pt2 R28 

T29 
M63 

Pt1 
R63 

M68 R68 

T32 M49 

Et5 

Pt4 R49 

T37 
M7 

Pt1 

R7 

M9 R9 

T75 
M19 Et1 R19 

T78 

T80 M21 Et1, Et3 Pt3 R21 

T88 M23 Et1 
Pt1 

R23 

T95 M25 Et5 R25 

T102 

M28 

Et1 

Pt2 

R28 

T103 

T104 

T105 

T106 

T107 
M41 R41 

M59 R59 

M63 
Pt1 

R63 

M68 R68 

T108 M28 
Pt2 

R28 

T125 M41 R41 

T138 

M49 Et5 Pt4 R49 

M63 

Et1 

Pt1 
R63 

M68 R68 

T163 

M59 Pt2 R59 
T164 

T165 

T167 

T169 M61 Et5 Pt3 R61 

T181 
M69 Et1 

Pt1 

R69 
T182 

N/A 

M9 
Et5 

R9 

M25 R25 

M60 

Et1 

Pt2 R60 

T138 M70 

Pt1 

R70 

Pb4.2 

T72 

M22 R22 

T83 

T84 

T85 

T86 

T126 
M42 Pt2 R42 

T127 

Pb4.3 

T34 
M7 Et5 

Pt1 

R7 

M69 Et1 R69 

T35 
M7 

Et5 
R7 

T36 

T43 M9 R9 

T72 

M42 

Et1 

Pt2 R42 

M63 
Pt1 

R63 

M68 R68 

T74 M18 Et1, Et3 Pt3 R18 

T76 M19 Et1 Pt1 R19 

T81 

M21 Et1, Et3 Pt3 R21 

M28 Et1 Pt2 R28 

M29 
Et5 

Pt4 R29 

M47 Pt2 R47 
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Table A3. (continued) 

Classes of    

design problems 

Design 

problems 

Artifacts Evaluation 

approach 

Product 

classification 

Primary 

studies Techniques Methods 

 

 

 
 

 

 
Cp4 

 

 
 

 

 
 

 

Pb4.3 

T81 M49 Et5 Pt4 R49 

T89 M23 Et1 

Pt1 

R23 

T94 
M25 Et5 R25 

T96 
M43 

Et1 

 R43 

T101 
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Table A4. Incidence matrix. 

Primary studies 
Design problems Classes of design problems 

Pb1.1 Pb1.2 Pb2.1 Pb2.2 Pb2.3 Pb2.4 Pb2.5 Pb2.6 Pb2.7 Pb3.1 Pb3.2 Pb3.3 Pb3.4 Pb3.5 Pb3.6 Pb3.7 Pb3.8 Pb3.9 Pb3.10 Pb3.11 Pb4.1 Pb4.2 Pb4.3 Pb4.4 Pb4.5 Cp1 Cp2 Cp3 Cp4 

R9 1       1 1           1 1   1           1   1     1 1 1 1 

R1 1 1   1 1     1 1   1 1 1 1     1   1             1 1 1   
R37 1 1             1               1                 1 1 1   

R8 1   1 1 1   1   1     1 1 1   1       1           1 1 1   

R54 1   1   1           1 1   1       1 1 1           1 1 1   
R20 1       1   1 1         1                         1 1 1   

R5 1       1     1   1   1   1 1                     1 1 1   

R46 1       1       1       1     1                   1 1 1   
R32   1 1             1         1 1     1             1 1 1   

R51   1             1       1 1       1               1 1 1   

R70 1 1 1                  1  1   1 1  1 
R19   1 1                                   1   1     1 1   1 

R12 1                               1     1           1   1   

R31   1               1         1                     1   1   
R44   1               1               1 1             1   1   

R71  1         1 1              1  1  

R27   1                   1     1 1                   1   1   
R11   1                                 1 1           1   1   

R47   1                                         1 1   1     1 

R58 1                                                 1       

R23         1   1     1     1           1   1   1       1 1 1 

R14         1   1               1         1         1   1 1 1 

R72     1   1 1  1 1 1 1   1  1 1     1  1 1 1 

R60         1           1         1   1 1 1 1   1 1     1 1 1 

R16     1 1 1   1     1     1 1                         1 1   
R30     1   1   1   1 1     1 1     1                   1 1   

R56     1   1     1   1 1 1                             1 1   

R48       1               1 1   1 1 1                   1 1   
R67         1 1 1 1     1       1 1   1   1             1 1   

R4         1   1   1     1 1         1   1             1 1   

R24         1   1   1           1 1 1   1               1 1   
R15         1   1     1   1     1 1                     1 1   

R10         1   1         1 1                           1 1   

R66         1   1         1     1 1                     1 1   

R45         1     1   1   1     1 1                     1 1   

R17         1     1   1   1     1                       1 1   

R55         1         1   1     1                       1 1   
R65           1       1   1     1 1   1                 1 1   

R40                 1 1   1 1                           1 1   

R2                 1                     1             1 1   

R41       1                                 1   1 1     1   1 

R39         1   1 1 1                                   1     

R7                   1                 1   1   1         1 1 

R61                   1                     1             1 1 
R69                             1 1     1   1   1         1 1 

R25                             1           1   1         1 1 

R21                                     1   1   1 1 1     1 1 
R49                                     1   1   1 1       1 1 

R18                                     1       1 1 1     1 1 

R3                                     1       1   1     1 1 
R6                                       1         1     1 1 
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Table A4. Incidence matrix. 

Primary studies 
Design problems Classes of design problems 

Pb1.1 Pb1.2 Pb2.1 Pb2.2 Pb2.3 Pb2.4 Pb2.5 Pb2.6 Pb2.7 Pb3.1 Pb3.2 Pb3.3 Pb3.4 Pb3.5 Pb3.6 Pb3.7 Pb3.8 Pb3.9 Pb3.10 Pb3.11 Pb4.1 Pb4.2 Pb4.3 Pb4.4 Pb4.5 Cp1 Cp2 Cp3 Cp4 

R26                   1   1     1 1                       1   
R57                   1         1 1   1                   1   

R53                   1         1 1                       1   

R64                   1         1 1                       1   
R62                   1               1                   1   

R38                       1 1   1 1                       1   

R36                       1       1                       1   
R35                             1 1 1                     1   

R33                             1 1   1                   1   

R52                             1 1   1                   1   

R50                             1         1               1   

R34                               1                       1   

R13                                       1               1   

R28                                         1   1           1 
R59                                         1   1           1 

R63                                         1   1           1 

R68                                         1   1           1 
R42                                           1 1           1 

R22                                           1             1 

R29                                             1           1 
R43                                             1           1 
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1) Frequency divided by the total number of primary studies (72 studies). 
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APPENDIX B – ARTICLE 2 

Table B1. Protocol for systematic literature review. 

1.0 Conceptual 

framework 

1.1 Increased demand for a greater variety of consumer products has forced many companies to rethink their strategies to offer more product variants. For manufacturers, producing a variety 

of products can satisfy this increasing demand and help companies gain more market share; however, increased variety can lead to higher design and production costs as well as longer 

lead times for new variants. As a result, a trade-off arises between cost-effectiveness and satisfying diverse customer demand (Simpson et al., 2014). 

    1.2 As a general reference, based on data from practical situations, it can be said that the production costs decrease by about 15 to 25% whenever the production scale is duplicated (Antunes 

et al., 2008). In the same way, it can be stated that there is an increase of 20 to 25% of the cost per unit produced each time the variety of manufactured items is duplicated (Antunes et 

al., 2008). 

    1.3 Research has found that the trade-off between product variety and cost-effectiveness can be appropriately managed by exploiting PBPF development, an area that has been widely 

studied for the past two decades (Simpson et al., 2014). 

    1.4 The product family is a set of products that share one or more common “elements” (e.g., components, modules, subsystems, fabrication processes, assembly operations) yet target a 

variety of different market segments (Simpson et al., 2014). A product family refers to a set of similar products that are derived from a common platform and yet possess specific 

functionalities to meet particular customer requirements (Meyer and Lehnerd, 1997). 

    1.5 The platform is a set of common components, modules, or parts from which a stream of derivative products can be efficiently developed and launched (Meyer and Lehnerd, 1997). 

    1.6 In essence, a PFA means the underlying architecture of a firm's product platform, within which various product variants can be derived from basic product designs to satisfy a spectrum 

of customer needs related to various market niches (Jiao and Tseng, 1999a). Product architecture can be defined as how the functional elements of a product are arranged into physical 

units and how these units interact (Ulrich, 1995). 

    1.7 The functional elements represent the minimum set of independent requirements that characterize entirely the attributes desired in a product (Jiao and Tseng, 1999a; Suh, 2001; Jiao, 

Simpson and Siddique, 2007). This voice-of-the-customer is a critical factor for specifying new platforms (Ferguson, Olewnik and Cormier, 2011), and usually derives from a marketing-

centric perspective (Chen, Hoyle and Wassenaar, 2013). The involvement of customer preferences in engineering design decisions has received remarkable attention recently (Simpson 

et al., 2014). 

    1.8 The physical components implement the functional elements of the product (Ulrich, 1995; Suh, 2001), and its objective is to achieve the best performance within the budget available 

(Kumar, Chen and Simpson, 2009). A strategy strongly linked to the traditional engineering-centric perspective (Chen, Hoyle and Wassenaar, 2013). Current research in the field of 

product family design mostly focuses on the tradeoff between increased commonality among products and the resulting decreased ability to meet performance targets for each product 

variant (Luo, 2011). 

    1.9 The two perspectives related to each element of a PFA may lead to a disconnected decision making that cannot assure optimal or near-optimal decisions into product family design (Luo, 

2011; Michalek et al., 2011). Where the engineering-centric perspective does not consider customer preferences and demand into the product development, and the marketing-centric 

perspective does not account for the engineering attributes related to performance and cost into product design (Kumar, Chen and Simpson, 2009). 

    1.10 Such highly interconnected relationships between the two domains imply that any required action in one domain can potentially influence the outcomes in the other domain. Therefore, in 

the design of an optimal or near-optimal product line, the marketing and engineering requirements often cannot be pursued separately or even sequentially (Luo, 2011). 

    1.11 Most literature on product line design tackles the optimal selection of products by maximizing the surplus - the margin between the customer-perceived utility and the price of the 

product. Other objectives widely used in selecting products among a broad set of potential products within a target market include maximization of profit, net present value, a seller’s 

welfare, market share, and share of choices, to name but a few (Jiao, Simpson and Siddique, 2007). 

    1.13 Most studies lack data-driven models of market preferences and consequently do not investigate broader business indicators such as profit and market share (Kumar, Chen and Simpson, 

2009). As a result, few existing methods examine broader enterprise measures and market considerations with product family design efforts in their formulation (Kumar, Chen and 

Simpson, 2009). 

   (continued) 
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Table B1. (continued). 

2.0 Context     2.1 Engineering, production, and operations management domains. 

        2.3 Product Development Process - PDP (Ulrich and Eppinger, 2012).  

        2.2 Type of products: consumer goods (durables), intermediate goods, capital goods. 

3.0 Time horizon     3.1 Product family design and platform-based product development: a state-of-the-art review (Jiao, Simpson and Siddique, 2007) - Up to 2007. 

    3.2 A review of mass customization across marketing, engineering, and distribution domains toward the development of a process framework (Ferguson, Olewnik and Cormier, 

2014) - From 2007 to 2014. 

        3.3 Advances in Product Family and Product Platform Design (Simpson et al., 2014) - From 2007 to 2014. 

        3.4 This study: up to 2020. 

4.0 Theoretical currents     4.1 Market-driven product family design 

5.0 Language     5.1 English 

6.0 Research question     6.1 Which methods address market considerations into product family design? 

        6.2 Which methods encompass broader business indicators into product family design? 

        6.3 What kind of design problems do these methods account for? 

        6.4 For which kind of products have these methods been developed? 

    6.5 How has the performance of these methods been assessed? 

    6.6 What are the main steps of these methods? 

    6.7 What is the execution order of these steps? 

    6.8 Which techniques are used to execute each step of these methods? 

        6.9 Is there a common underlying structure among these methods? 

7.0 Review strategy     7.1 Configurative (meta-synthesis). 

8.0 Selecting criteria 
  

  

8.1 Including criteria   8.1.1 Methods and techniques addressing market considerations and broader business indicators into product family design (Following the conceptual framework of this protocol). 

        8.1.2 Document type: Articles. 

        8.1.3 All-access types. 

8.2 Excluding criteria   8.2.1 Manufacturing and production for product families. 

        8.2.2 Supply chain issues of product families. 

        8.2.3 Service design. 

        8.2.4 Software development. 

        8.2.5 Design support systems. 

        8.2.6 Theoretical development and synthesis of product family design. 

        8.2.7 Fundamental issues on product family design. 

        8.2.8 Literature review. 

        8.2.9 Document type: Conference paper, review, book, book chapter, and conference review. 

        8.2.10 Subjects areas such as computer science, mathematics, decision science, materials science, environmental science economics, econometrics, finance, energy, physics, and 

astronomy. 

9.0 Search terms   9.1 Market-driven. 

    9.2 Customer-oriented. 

    9.3 Marketing. 

    9.4 Design. 

    9.5 Product family. 

    9.6 Product platform. 

    9.7 (“Market-driven” OR “Customer-oriented” OR “Marketing”) AND “design” AND ("Product family" OR "Product platform") 

10.0 Data-bases   10.1 Web of Science. 

    10.2 Scopus. 
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Table B2. Mixed coding scheme. 

Id. Codes Definition / Function Type 

Cpi Classes of design problems for PBPF:     

Cp1 Product family planning and positioning Deals with market objectives, along with technology developments guided by corporate strategies (Ulrich and Eppinger, 2012). Categorical 

Cp2 Market-driven product family design Deals with the transition of customers’ needs to functional requirements (Simpson et al., 2014). Categorical 

Cp3 Product family modeling Comprehends the definition of product family instances in terms of design parameters and functional requirements (Simpson et al., 2014). Categorical 

Cp4 Product family configuration Deals with structural configuration problem wherein the modules formulating the variant are optimally selected (Simpson et al., 2014). Categorical 

Pbi Design problems:     

Pb1.1 Strategic product family planning How to incorporate strategic axes into product family design (Jiao and Tseng, 1999a)? Categorical 

Pb1.2 Market segmentation How to decompose the market into several segments taking into account the industry type, customer consumption levels, regional 

characteristics, among other factors (Fan et al., 2015)? 

Categorical 

Pb1.3 Definition and modeling of product positioning 

criteria 

What criteria to use for positioning the product family into the marketplace (Jiao, Simpson and Siddique, 2007)? Open 

Pb1.4 Selection of variants to compound the product 

line 

How to choose the right variants to compound the product line (Miao et al., 2017)? Open 

Pb2.1 Identification of customer needs How to derive meaning through interpretations of customers’ perceptions about the existing products (Cheng et al., 2017)? Categorical 

Pb2.2 Determination of relative importance among 

customer needs 

How to determine the most influential needs on customer decision making (Du, Jiao and Chen, 2014; Wei et al., 2015)? Categorical 

Pb2.3 Formulation of functional requirements How to translate the market-centric information into engineering specifications (Jung and Simpson, 2016; Johannesson et al., 2017)? Categorical 

Pb2.4 Definition of functional requirements target 

values and ranges 

How to arrange similar customers in terms of their desired values (Park et al., 2008; Zacharias and Yassine, 2008; Mesa et al., 2014; 

Bejlegaard et al., 2018)? 

Categorical 

Pb2.5 Mapping of dependencies among functional 

requirements 

How to determine the functional requirements’ hierarchy (Alizon, Shooter and Simpson, 2007; Bonjour et al., 2009; Yan and Stewart, 

2010)? 

Categorical 

Pb2.6 Representation of functional requirements How to represent the functional view of a product family (Jiao and Tseng, 1999a; Kota, Sethuraman and Miller, 2000; Yang, Yu and 

Jiang, 2014)? 

Categorical 

Pb3.1 Definition and modeling of the product family 

and platforming criteria 

What approach and criteria to use for defining the product family instances and platforms (Messac, Martinez and Simpson, 2002; Miao et 

al., 2017)? 

Categorical 

Pb3.2 Formulation of design parameters How to determine the physical effect with the ability to fulfill one or more functional requirements (Gauss, Lacerda and Sellitto, 2019)? Categorical 

Pb3.3 Definition of design parameters specification 

ranges 

How to define the design parameters specification ranges to accomplish its respective functional requirements (Ma and Kim, 2016)? Open 

Pb3.4 Mapping of product family architecture How to map the relationships between functional requirements and design parameters (Navarrete et al., 2013; Borjesson and Hoelttae-

Otto, 2014)? 

Categorical 

Pb3.5 Decomposition of the system into functional 

modules 

How to decompose the product family architecture into design modules (Jiao and Tseng, 1999a)? Categorical 

Pb3.6 Creation of rough geometric layouts How to identify the interactions among physical components (Pakkanen, Juuti and Lehtonen, 2016)? Categorical 

Pb3.7 Mapping of structural dependencies among 

components 

How to model the structural dependencies among components (Yu et al., 2015; Kim et al., 2016; Baylis, Zhang and McAdams, 2018)? Categorical 

Pb3.8 Decomposition of the system into physical 

modules 

How to decompose a set of structural relationships into physical modules (Bonjour et al., 2009)? Categorical 

Pb3.9 Specification of product family instances How to obtain the product family instances that best satisfy the overall design requirements (Messac, Martinez and Simpson, 2002)? Open 

Pb3.10 Building of the MBPF configuration structure How to build a hierarchical structure for end product configuration (Li, Huang and Newman, 2008)? Categorical 

Pb3.11 Evaluation of module-based product family 

design 

How to evaluate product families as a whole and generate measures of deviation from the ideal (Otto and Hölttä-Otto, 2007)? Categorical 

Pb4.1 Definition and modeling of configuration 

criteria 

What criteria to use for modeling the combinatorial and parametric problem (Li, Huang and Newman, 2008; Li and Huang, 2009)? Categorical 

Pb4.3 Combination of modules to generate product 

family variants 

How to determine the right combination of modules to formulate the product family variants (Xiong, Du and Jiao, 2018)? Categorical 

(continued) 
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Table B2. (continued). 

Id. Codes Definition / Function Type 

Cti Criteria:     

Ct1 Utility The level of users’ satisfaction with a product (Yoshimura and Takeuchi, 1994). Categorical 

Ct2 Cost The amount of expenditure incurred to produce a product (Wouters and Morales, 2014). Categorical 

Ct3 Commonality The sharing of intellectual and material assets across products to minimize manufacturing complexity (Erens and Verhulst, 1997). Categorical 

Ct4 Redesign effort The amount of redesign effort required for future designs of the product (Martin and Ishii, 2002). Categorical 

Ct5 Interaction or coupling The strength of coupling between the components in a product (Martin and Ishii, 2002). Categorical 

Ct6 Modularity The decomposition of a system into independent modules that can be treated as logical units (Newcomb, Bras and Rosen, 1998). Categorical 

Ct7 Quality The state of being free from defects (Chan and Wu, 2002). Categorical 

Ct8 Demand The quantity of a product the customer intends to purchase (Antunes et al., 2008). Categorical 

Ct9 Profit The economic benefit of a product to an enterprise (Dong, Shao and Xiong, 2011; Chen, Hoyle and Wassenaar, 2013). Categorical 

Ct10 Price The amount of money the customer is willing to pay for a product (Cox and Schleier, 2010). Categorical 

Ct11 Variety The level of distinctiveness of the product’s offering in the marketplace (Chen, Hoyle and Wassenaar, 2013). Categorical 

Pti Product classification:   

Pt1 Consumer goods (durables) Consist of durable products that people buy for their use (OECD, 2008). Categorical 

Pt2 Intermediate goods Comprehend those products used in the production of other goods (OECD, 2008). Categorical 

Pt3 Capital goods Consist of machines and equipment used to produce products or provide services (OECD, 2008). Categorical 

Eti Evaluation approach:   

Et1 Observational (i) Case study elements: study the existing or created artifact in-depth in the business environment. (ii) Field study: monitor the use of the artifact in 

multiple projects (Dresch, Lacerda and Antunes Jr, 2015). 

Categorical 

Et2 Analytical (i) Static analysis: examine the structure of the artifact for static qualities. (ii) Architecture analysis: study the fit of the artifact in the technical architecture 

of the complete technical system. (iii) Optimization: demonstrate the optimal properties inherent to the artifact or demonstrate the limits of the optimization 

in the artifact behavior. (iv) Dynamic analysis: study the artifact during use to evaluate its dynamic qualities (Dresch, Lacerda and Antunes Jr, 2015). 

Categorical 

Et3 Experimental (i) Controlled experiment: study the artifact in a controlled environment to determine its qualities. (ii) Simulation: execute the artifact with artificial data 

(Dresch, Lacerda and Antunes Jr, 2015). 

Categorical 

Et4 Testing (i) Functional test (black box): implement the artifact interfaces to discover potential failures and identify defects. (ii) Structural test (white box): perform 

coverage tests of some metrics for implementing the artifact (Dresch, Lacerda and Antunes Jr, 2015). 

Categorical 

Et5 Descriptive (i) Informed argument: use the information of knowledge bases (e.g., relevant research) to construct a convincing argument about the utility of the artifact. 

(ii) Scenarios: construct detailed scenarios for the artifact to demonstrate its utility (Dresch, Lacerda and Antunes Jr, 2015). 

Categorical 

Mi Methods:   

M1 Product line development with 

customer interaction 

Finds a variety of close to optimal solutions to compound the product line (Márkus and Váncza, 1998). Open 

M2 Design for variety (DFV) Presents two indices to measure a product’s architecture. The first index is the Generational Variety Index (GVI), a measure for redesign effort required 

for future designs of the product. The second index is the Coupling Index (CI), a measure of the coupling among the product components (Martin and Ishii, 

2002). 

Categorical 

M3 Product family design using 

physical programming 

Employs the Physical Programming method, enabling designers to formulate the product family optimization problem in terms of physically meaningful 

terms and parameters (Messac, Martinez and Simpson, 2002). 
Open 

M4 Product platform concept 

exploration method (PPCEM) 

Discuss how the strategic incorporation of product platforms into the design process can leverage the design effort of individually customized products 

(Farrell and Simpson, 2003). 

Open 

M5 Prescribing the content and 

timing of product upgrades 

Prescribes the content and timing of upgrades to maximize total profit over the life cycle of the product family (Wilhelm, Damodaran and Li, 2003). Open 

M6 Integrated modular product 

design 

Consists of an integrated method that includes additional tools and stages for complete modular architecture design. The borders of the modular design 

process are expanded by adding strategic issues, appropriateness to modularity, the degree of modularity and modularity strategies (Asan, Polat and Serdar, 

2004). 

Categorical 

M7 Structural component-based 

product family design 

Creates product family variants for different market requests through a structural graph representing the design priorities and constraints (Hsiao and Liu, 

2005). 

Open 

(continued) 
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Table B2. (continued). 

Id. Codes Definition / Function Type 

M8 Customer value analysis Customize existing product designs to meet individual customers’ needs (Du, Jiao and Tseng, 2006). Open 

M9 Mapping product design specification 

for mass customization 

Generates product design specifications from customer functional requirements with a mass customization perspective (Krishnapillai and Zeid, 

2006). 

Open 

M10 Designing a family of development-

intensive products 

Models the decision-making on the product line design by taking into account the quality degradation and the development costs (Krishnan and 

Zhu, 2006). 

Open 

M11 Functional modeling of modular 

product family design 

Supports the identification of both shared and individual functional modules across a family of products (Zhang, Tor and Britton, 2006). Categorical 

M12 Market segmentation for product 

family positioning based on fuzzy 

clustering 

Proposes a fuzzy clustering-based market segmentation approach (Zhang, Jiao and Ma, 2007). Open 

M13 Platform leveraging in a market 

segmentation grid for an existing 

product line 

Optimizes a component platform portfolio, so that market segment grid platform leveraging is maximized (Farrell and Simpson, 2008). Open 

M14 Dynamic approach to product 

architecture optimisation 

Determines the optimal product architecture configuration in the multiproduct hierarchy by directly incorporating what customers want in the design 

and formulation of a family of products (Tucker and Kim, 2008). 

Categorical 

M15 Optimal platform investment for 

product family design 

Suggests the optimal initial investment in the platform, the commonality level between variants, and the number of variants to be produced in order 

to maximize market coverage using both analytical and simulation techniques (Zacharias and Yassine, 2008). 

Categorical 

M16 Integration of marketing research 

techniques into house of quality and 

product family design 

Integrates marketing research techniques into the house of quality and product family design (Kazemzadeh et al., 2009). Open 

M17 Evolutionary product line design 

balancing customer needs and product 

commonality 

Develops a multi-objective optimization model to balance the diverging forces between marketing and engineering in evolutionary product line 

design (Chen, Jiao and Tseng, 2009). 

Open 

M18 Market-driven product family design 

(MPFD) 

Examines the impact of increasing the variety in the product offerings across different market segments and explore the cost-savings associated with 

commonality decisions (Kumar, Chen and Simpson, 2009). 

Open 

M19 Customer-oriented optimal 

configuration of product scheme based 

on Pareto genetic algorithm 

Uses a Pareto genetic algorithm for configuration optimization through which optimal solutions for customer requirements can be obtained (Yifei et 

al., 2015). 

Open 

M20 Predictive data-driven product family 

design (PDPFD) 

Determines the optimal product family architectures with customer preference data (Ma and Kim, 2016). Open 

M21 Coordinated optimisation of platform-

driven product line planning by bilevel 

programming 

Uses a bilevel mixed 0–1 nonlinear programming model to formulate coordinated optimisation for platform-driven product line planning (Miao et 

al., 2017). 

Open 

Ti Techniques:   

T1 Mathematical modeling Constructs a mathematical model that represents the essence of the problem to be solved (Hilier and Lieberman, 2015). Categorical 

T2 Agent-based models (ABM) Simulates the actions and interactions of autonomous agents in assessing their effects on the system as a whole (Rai and Allada, 2003). Categorical 

T3 Conjoint analysis Determines what combination of attributes is most influential on customers’ decision making (Chen, Hoyle and Wassenaar, 2013). Categorical 

T4 Aggregate project plan Classify projects based on the number of resources they consume and on how they will contribute to the company’s product line (Wheelwright and 

Clark, 1992). 

Categorical 

T5 New product development map Presents the evolution of current product lines in a summarised yet strikingly clear way so that all functional areas in the organization can respond to 

a common vision (Wheelwright and Sasser, 1989). 

Categorical 

T6 Design matrix (DM) Represent the relationships between two domains, for example, between functions and physical design parameters (Suh, 2001). Categorical 

T7 Generational variety index (GVI) Indicates the amount of redesign required for a component to meet the future market requirements (Martin and Ishii, 2002). Categorical 

T8 Design structure matrix (DSM) Represents the relationships among elements of the same domain, for example, between components (Browning, 2001). Categorical 

(continued) 
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Table B2. (continued). 

Id. Codes Definition / Function Type 

T9 Coupling index (CI) Indicates the strength of coupling among the components in a product (Martin and Ishii, 2002). Categorical 

T10 Market segmentation grid (MSG) Articulates leveraging platform strategies in a given market (Kumar, Chen and Simpson, 2009). Categorical 

T11 Physical programming Addresses the inherent multiobjective nature of design problems, where multiple conflicting objectives govern the search for the best solution 

(Messac, Martinez and Simpson, 2002). 

Open 

T12 Generalized reduced gradient (GRG) 

algorithm 

Finds optimized solutions for nonlinear problems (Zacharias and Yassine, 2008). Categorical 

T13 Simulated annealing Approximates global optimization in an ample search space for an optimization problem  (Agard and Bassetto, 2013). Categorical 

T14 Branch and bound algorithm Finds an optimal solution for mixed integer nonlinear programming problems with discrete and continuous variables (Tucker and Kim, 2008). Categorical 

T15 Survey Provides statistical descriptions of people by asking questions, usually of a sample (Forza, 2002). Categorical 

T16 Modularity degree matrix Evaluates the willingness to the modularity of product architectures based on the measures of the degree of modularity and the appropriateness for 

modularity (Asan, Polat and Serdar, 2004). 

Categorical 

T17 Qualitative interviews Derives meaning through interpretations, not necessarily ‘facts’ from participant talk (Malhotra and Birks, 2007). Categorical 

T18 Function structure / diagram Graphically represents a functional model where its overall function is represented by a collection of sub-functions connected by the flows on which 

they operate (Stone and Wood, 2000). 

Categorical 

T19 Dominant flow heuristic Defines a module based on a flow that passes through a set of sub-functions (Stone, Wood and Crawford, 2000). Categorical 

T20 Branching flow heuristic Defines a module based on branches of a parallel function chain (Stone, Wood and Crawford, 2000). Categorical 

T21 Conversion-transmission heuristic Defines a module based on a conversion sub-function or a conversion transmission pair or chain of sub-functions (Stone, Wood and Crawford, 

2000). 

Categorical 

T22 Cluster identification algorithm Finds optimal machine cells and part families provided that the machine-part incidence matrix has the diagonal block structure embedded to solve 

standard group technology problems (Kusiak and Chow, 1987). 

Categorical 

T23 Design for "X" Provides system-level design guidelines for product development (Pahl et al., 2007). Categorical 

T24 Cross-impact systems and matrices 

(SMIC) 

Describes the potential modes of interaction between a given set of variables and the assessment of the strength of these interactions (Asan, Polat 

and Serdar, 2004). 

Categorical 

T25 Objective matrix Evaluates different types or dimensions of performance measures altogether by composing them into a single composite measure (Asan, Polat and 

Serdar, 2004). 

Categorical 

T26 Hierarchy graph Illustrates the hierarchical relationships among the elements retrieved from a decomposed DSM (Hsiao et al., 2013). Categorical 

T27 Quality function deployment (QFD) Translates customer requirements into technical requirements for each stage of product development and production (Chan and Wu, 2002). Categorical 

T28 Focus group Consists of a gathering of deliberately selected people who participate in a planned discussion intended to elicit consumer perceptions about a topic 

or area of interest in an environment that is non-threatening and receptive (Malhotra and Birks, 2007). 

Categorical 

T29 Reverse engineering Deconstructs an object to reveal its design, architecture, or extract knowledge from it  (Thevenot and Simpson, 2007). Open 

T30 Benchmarking Measures the performance of a product against those considered to be the best (Thevenot and Simpson, 2007). Open 

T31 Fractional factorial design Provides the smallest number of runs for which k factors can be studied in a complete factorial design (Montgomery and Runger, 2011). Open 

T32 Multiple regression Models the relationship between multiple regressors or predictor variables (Montgomery and Runger, 2011). Open 

T33 ANOVA Analyses the differences among group means in a sample (Montgomery and Runger, 2011). Open 

T34 Descriptive statistics Describes the measures of central tendency and variability of a given data set (Montgomery and Runger, 2011). Open 

T35 Modularity matrix Represents the functional outputs of modules for each product variant  (Dahmus, Gonzalez-Zugasti and Otto, 2001). Categorical 

T36 Fuzzy clustering means (FCM) Assigns data points to clusters allowing each data point to belong to multiple clusters with varying degrees of membership (Bezdek, 1981). Categorical 

T37 Analytical hierarchy process (AHP) Compares alternatives through a scale of absolute judgments that represents, how much more, one element dominates another concerning a given 

attribute (Saaty, 2008). 

Categorical 

T38 Naïve Bayesian Model Builds a predictive model based on a fraction of customer survey data used to train the computer learning model (Tucker and Kim, 2008). Categorical 

T39 Data to Knowledge (D2K) Classifies the survey results and maps the data into one of several predefined classes (Tucker and Kim, 2008). Categorical 

T40 Gross margin Measurement of how effectively the company turns its revenue into profit (Cox and Schleier, 2010). Categorical 

T41 K-means clustering Classifies a given data set through a certain number of clusters fixed apriori (Zhu et al., 2010). Categorical 

T42 Ward's hierarchical clustering Merges attributes into clusters based on the residual error within the differences of the instance attribute from those of another instance or group 

(Kazemzadeh et al., 2009). 

Open 

(continued) 
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Table B2. (continued). 

Id. Codes Definition / Function Type 

T43 Direct observation Collects and analyzes information obtained directly or indirectly by watching and observing others in natural or planned environments 

(Kazemzadeh et al., 2009). 

Open 

T44 Part-worth utility Measures how much each attribute and level influence the customer’s decision making (Du, Jiao and Tseng, 2006). Open 

T45 Commonality percentage index (CPI) Measures how well the product family design utilizes common technical requirements (Kazemzadeh et al., 2009). Open 

T46 Cost reduction index (CRI) Accounts for the savings in production cost when the company decides in favor of meeting customized technical requirements for customers in a 

particular segment rather than general technical requirements (Kazemzadeh et al., 2009). 

Open 

T47 Satisfaction percentage index (SPI) Measures customer satisfaction (Kazemzadeh et al., 2009). Open 

T48 Discrete choice analysis Estimates market demand based on customers’ purchasing decisions (Chen, Jiao and Tseng, 2009). Open 

T49 Internal product line commonality Consists of the inverse of the average 1-norm distance among the constituent products of a product line (Chen, Jiao and Tseng, 2009). Open 

T50 External product line commonality Consists of the inverse of the average 1-norm distance between the constituent products of two generations of a product line (Chen, Jiao and Tseng, 

2009). 

Open 

T51 Genetic algorithm (GA) Finds optimized solutions to search problems based on the mechanism of natural selection and natural genetics  (Meng, Jiang and Huang, 2007). Categorical 

T52 Nested logit model (NL) Expresses the choice-behavior of individual customers and can be used whenever some choice alternatives are similar to others (Chen, Hoyle and 

Wassenaar, 2013). 

Open 

T53 Pareto genetic algorithm Locates and maintain a front of non-dominated solutions, ideally a set of Pareto optimal solutions, by using an evolutionary process to explore the 

search space (Jiao, 2012). 

Open 

T54 Exponential smoothing model Smoothes time series data using the exponential window function (Ma and Kim, 2016). Open 

T55 Expectation maximization clustering 

(EM) 

Assumes the data set can be modeled as a linear combination of multivariate normal distributions and finds the distribution parameters that 

maximize a model quality measure (Abbas, 2008). 

Open 

T56 Multinomial logit (MNL) Predicts the probabilities of the different possible outcomes of a categorically distributed dependent variable, given a set of independent variables 

(Chen, Hoyle and Wassenaar, 2013). 

Categorical 
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Table B3. Structured classes of design problems. 

Classes of    
design problems 

Design 
problems 

Artifacts Evaluation 
approach 

Product 
classification 

Primary 
studies Techniques Methods 

Cp1 

Pb1.1 

T4 
M2 

Et5 
Pt1 R2 

T5 

T10 
M3 

Pt2 
R3 

M4 
Et1 

R4 

T12 M15 

Pt1 

R15 

T14 M5 Et3, Et5 R5 

T15 
M6 

Et1 
R6 

T16 

N/A M7 R7 

Pb1.2 

T10 

M3 Et5 

Pt2 

R3 

M4 

Et1 

R4 

M13 R13 

M18 R18 

T33 M16 Pt1 R16 

T36 
M12 Pt2 R12 

T37 

T39 M14 

Pt1 

R14 

T41 
M16 R16 

T42 

N/A 
M1 Et5 Pt3 R1 

M7 Et1 Pt1 R7 

Pb1.3 

T1 

M1 Et5 Pt3 R1 

M5 Et3, Et5 Pt1 R5 

M10 

Et1 Pt2 

R10 

M13 R13 

M18 R18 

M21 

Et5 

Pt1 R21 
T3 

T32 
M20 Pt2 R20 

T34 

T40 

M1 Pt3 R1 

M5 Et3, Et5 Pt1 R5 

M10 
Et1 

Pt2 

R10 

M18 R18 

M20 
Et5 

R20 

M21 

Pt1 

R21 

T48 

M17 
Et1 

R17 T49 

T50 

T52 M18 
Pt2 

R18 

T54 M20 

Et5 

R20 

T56 M21 Pt1 R21 

Pb1.4 

T2 M1 Pt3 R1 

T12 M20 Pt2 R20 

T51 
M17 Et1 

Pt1 
R17 

M21 Et5 R21 

N/A 
M13 

Et1 Pt2 
R13 

M18 R18 

              (continued) 
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Table B3. (continued). 

Classes of    
design problems 

Design 
problems 

Artifacts Evaluation 
approach 

Product 
classification 

Primary 
studies Techniques Methods 

Cp2 

Pb2.1 

T15 

M6 

Et1 

Pt1 R6 

M8 Pt2 R8 

M14 

Pt1 

R14 

M16 R16 

T17 

M6 R6 

M8 Pt2 R8 

M16 Pt1 R16 

T28 M8 Pt2 R8 

T43 M16 Pt1 R16 

Pb2.2 

T3 
M8 Pt2 R8 

M16 
Pt1 

R16 

T15 

M6 R6 

M8 Pt2 R8 

M16 
Pt1 

R16 

T27 M7 R7 

T31 
M8 Pt2 R8 

M16 Pt1 R16 

T32 

M8 Pt2 R8 T33 

T44 
M16 

Pt1 
R16 

Pb2.3 

T18 

M6 R6 

M11 Et5 Pt3 R11 

M15 Et1 

Pt1 

R15 

T27 

M2 Et5 R2 

M7 

Et1 

R7 

M16 R16 

T29 
M8 Pt2 R8 

T30 

Pb2.4 

T3 M2 
Et5 

Pt1 R2 

T27 
M9 Pt2 R9 

M15 Et1 Pt1 R15 

T41 M20 
Et5 

Pt2 

R20 

N/A 
M3 R3 

M4 
Et1 

R4 

Pb2.5 
T18 

M6 Pt1 R6 

M11 Et5 Pt3 R11 

M15 

Et1 Pt1 

R15 

T27 M16 R16 

Pb2.6 T18 M6 R6 

               (continued) 
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Table B3. (continued). 

Classes of    
design problems 

Design 
problems 

Artifacts Evaluation 
approach 

Product 
classification 

Primary 
studies Techniques Methods 

Cp3 

Pb3.1 

T1 

M4 

Et1 

Pt2 R4 

M8 
Pt2 

R8 

M18 R18 

M21 

Et5 

Pt1 

R21 

T7 
M2 R2 

T9 

T11 M3 

Pt2 

R3 

T34 M9 R9 

Pb3.2 N/A 

M3 R3 

M4 
Et1 

R4 

M8 R8 

Pb3.3 
T12 M20 

Et5 

R20 

N/A M3 R3 

Pb3.4 

T6 M2 
Pt1 

R2 

T27 
M7 Et1 R7 

M9 
Et5 

Pt2 R9 

T35 M11 Pt3 R11 

Pb3.5 

T19 

M6 Et1 Pt1 R6 

M11 Et5 Pt3 R11 

M15 
Et1 Pt1 

R15 

T20 

M6 R6 

M11 Et5 Pt3 R11 

M15 
Et1 Pt1 

R15 

T21 

M6 R6 

M11 Et5 Pt3 R11 

M15 
Et1 

Pt1 

R15 

Pb3.6 
T23 M6 R6 

N/A M2 

Et5 

R2 

Pb3.7 

T6 M9 Pt2 R9 

T8 
M2 

Pt1 

R2 

M7 

Et1 

R7 

Pb3.8 

T22 M6 R6 

N/A 
M7 R7 

M9 
Et5 

Pt2 

R9 

Pb3.9 

T11 M3 R3 

T12 
M4 Et1 R4 

T13 

T51 M21 
Et5 

Pt1 R21 

T55 M20 

Pt2 

R20 

N/A 
M8 

Et1 

R8 

M18 R18 

Pb3.10 T26 M7 

Pt1 

R7 

Pb3.11 

T24 
M6 R6 

T25 

T45 

M16 R16 T46 

T47 

Cp4 

Pb4.1 

T1 
M19 Pt3 R19 

T37 

T38 

M14 Pt1 R14 T40 

Pb4.2 
T14 

T53 M19 Pt3 R19 
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Table B4. Incidence matrix. 

Primary studies 
Design problems Classes of design problems 

S1.1 S1.2 S1.3 S1.4 S2.1 S2.2 S2.3 S2.4 S2.5 S2.6 S3.1 S3.2 S3.3 S3.4 S3.5 S3.6 S3.7 S3.8 S3.9 S3.10 S3.11 S4.1 S4.2 Cp1 Cp2 Cp3 Cp4 

R7 1 1       1 1             1     1 1   1       1 1 1   

R3 1 1           1     1 1 1           1         1 1 1   

R4 1 1           1     1 1             1         1 1 1   

R6 1       1 1 1   1 1         1 1   1     1     1 1 1   

R15 1           1 1 1           1                 1 1 1   

R2 1           1 1     1     1   1 1             1 1 1   

R16   1     1 1 1   1                       1     1 1 1   

R20     1 1       1         1           1         1 1 1   

R14   1     1                                 1 1 1 1   1 

R18   1 1 1             1               1         1   1   

R21     1 1             1               1         1   1   

R1   1 1 1                                       1       

R5 1   1                                         1       

R10     1                                         1       

R12   1                                           1       

R13   1 1 1                                       1       

R17     1 1                                       1       

R8         1 1 1       1 1             1           1 1   

R11             1   1         1 1                   1 1   

R9               1     1     1     1 1             1 1   

R19                                           1 1       1 

Occurrence 7 9 8 6 4 4 7 6 4 1 7 3 2 4 3 7 3 3 6 1 2 2 2 17 12 13 2 

Relative Frequency (1 

3
3
.3

%
 

4
2
.9

%
 

3
8
.1

%
 

2
8
.6

%
 

1
9
.0

%
 

1
9
.0

%
 

3
3
.3

%
 

2
8
.6

%
 

1
9
.0

%
 

4
.8

%
 

3
3
.3

%
 

1
4
.3

%
 

9
.5

%
 

1
9
.0

%
 

1
4
.3

%
 

3
3
.3

%
 

1
4
.3

%
 

1
4
.3

%
 

2
8
.6

%
 

4
.8

%
 

9
.5

%
 

9
.5

%
 

9
.5

%
 

8
1
.0

%
 

5
7
.1

%
 

6
1
.9

%
 

9
.5

%
 

1) Frequency divided by the total number of primary studies (21 studies). 
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APPENDIX C – ARTICLE 3 

Table C1. Learning log. 

Id. Cycle Entered by  DSR Step Subject Situation Recommendations & Comments Implemented in 

L1 1 L. Gauss  2. Systematic 

literature 

review 
(𝑆𝐿𝑅). 

Stones' heuristics are 

subjected to bias. 

Stones' heuristics used to cluster the design problems into 

classes are subject to bias (Stone, Wood and Crawford, 

2000). 

The modularity index (𝑀𝐼), a measure to evaluate the quality 

of a clustering solution, has been added. In future research, 𝑀𝐼 

can be used to optimize the clustering of design problems into 

classes (Jung and Simpson, 2017). 

DSR methodology 

L2 1 A. Dresch  3. Awareness 

of the 

problem. 

𝑆𝐿𝑅 is not enough. 𝑆𝐿𝑅 might not be the unique technique to support the 

awareness of the problem, otherwise, the result of this step 

might be subjected to academic bias. 

The 𝑆𝐿𝑅 has been complemented by qualitative interviews 

with scholars and practitioners. 

DSR methodology 

L3 1 L. Gauss  3. Awareness 

of the 

problem. 

Techniques influence the 

functional model. 

It has been noted during the artifact construction that the 

selection of the techniques (Step 6.2) might influence the 

sub-functions compounding the functional model (Step 5.1). 

Although it appears in the research strategy, it was not 

considered in the research method. 

It has been added a feedback flow coming from step 6.2 to 5.1. DSR methodology 

L4 1 L. Gauss  5. Proposition 

of artifacts. 

The adoption of discrete 

choice analysis changed the 

method’s steps. 

From the selection of Nested Logit technique to model the 

customers’ choice probabilities in step 𝑆1.3, emerged the 

need to include additional method’s steps. 

The steps 𝑆2.7, 𝑆2.8 and 𝑆2.9 have been added. MDM version 2 

L5 1 L. Gauss  5. Proposition 

of artifacts. 

Discarded the modules’ 

classification in 𝐶𝑝3. 

It has been noted that the classification of the modules does 

not alter the final modular product family structure. 

The modules’ classification step in 𝐶𝑝3 has been eliminated 

from the MDM structure. 

MDM version 2 

L6 1 L. Gauss  8. Evaluation 

of the 

artifacts. 

Differentiating attributes 
(𝐷𝐴) dependent on market 

segments (𝑀𝑠). 

It has been identified that the differentiating attributes (𝐷𝐴) 

may vary depending on the market segment (𝑀𝑠). 
It has been considered the mapping between the differentiating 

attributes (𝐷𝐴) and market segments (𝑀𝑠) in step 𝑆2.2. 

MDM version 2 

L7 1 L. Gauss  8. Evaluation 

of the 

artifacts. 

Feedback from the 

definition of differentiating 

attributes (𝐷𝐴) to market 

segmentation. 

It has been noted that the survey results in step 𝑆2.2 could be 

used to refine the market segmentation in step 𝑆1.3. 

It has been added a feedback flow coming from step 𝑆2.2 to 

𝑆1.3. 

MDM version 2 

L8 1 L. Gauss  8. Evaluation 

of the 

artifacts. 

Engineering attributes (𝐸) 

as numerical, binary, and 

categorical variables.  

It has been perceived that the engineering attributes (𝐸) 

might be of three types: numerical, binary, and categorical. 

No action has been taken. MDM version 1 

L9 1 L. Gauss 

D. Lacerda 

 8. Evaluation 

of the 

artifacts. 

Theoretical assumptions of 

multiple regression are not 

attended in contexts of low 

data availability. 

It has been found multicollinearity problems regarding the 

regression coefficients. The reason for that lies in the ratio 

between the number of engineering attributes (𝐸) and 

required competing alternatives (𝐽) to properly adjust the 

coefficients.  

The multiple regression technique has been substituted by the 

Analytic Hierarchy Process (𝐴𝐻𝑃) (Saaty, 2008) for modeling 

the customers’ choice probabilities in contexts of low data 

availability. 

MDM version 4 

L10 1 L. Gauss 

D. Lacerda 

 8. Evaluation 

of the 

artifacts. 

Lack of technique to 

estimate the market size 
(𝑀𝑘). 

Although the market size (𝑀𝑘) consists of an important 

entity of the method, there were no techniques assigned to 

its estimation.  

It has been added the following techniques in step 𝑆1.1: Delphi 

(Dalkey, 1969), Three-point estimate (Premachandra, 2001), 

and Domain knowledge (Jiao and Tseng, 1999a).  

MDM version 5 

L11 1 L. Gauss  8. Evaluation 

of the 

artifacts. 

The threshold to help the 

decision-making on 

investment in the product 

family design. 

It has been identified the lack of a threshold to help the 

decision-making on investment in the product family 

design. 

The expected profit (𝑉𝑒) has been added to that end. Therefore, 

if 𝑉 ≥ 𝑉𝑒 , then it would be reasonable to invest in the product 

family design. 

MDM version 2 

(continued) 
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Table C1. (continued). 
Id. Cycle Entered by  DSR Step Subject Situation Recommendations & Comments Implemented in 

L12 2/3 V. Leivas 

F. Lima 

 8. Evaluation 

of the 

artifacts. 

Aesthetics requirements 

might prevent the adoption 

of modularity. 

It is believed that the adoption of modularity might prevent 

product variety when aesthetics attributes are required.  

It has been assumed as a limitation of the method, therefore no 

action has been taken. 

MDM version 3 

L13 2 L. Gehlen  8. Evaluation 

of the 

artifacts. 

Difficulty to modularize 

convenience goods. 

It has been noted that convenience goods such as food and 

pet food might be difficult to modularize due to its integral 

architecture.    

No action has been taken since it was already considered out 

of the MDM scope. 

MDM version 2 

L14 2 N. 

Fagherazzi 

 8. Evaluation 

of the 

artifacts. 

Open architecture with the 

possibility to include other 

techniques. 

It has been perceived that, depending on the context, other 

techniques might emerge during the MDM life-cycle. 

The open architecture of the technique has been formalized.  MDM version 6 

L15 2 T. Vargas  8. Evaluation 

of the 

artifacts. 

Willingness to 

modularization. 

There is no step to evaluate the willingness to 

modularization of a product family architecture. 

It has been added a conditional decision after step 𝑆3.4 leading 

to the end of the process if an integral product family 

architecture is identified.  

MDM version 6 

L16 2 V. Lubke  8. Evaluation 

of the 

artifacts. 

Low heterogeneity of a 

single market segment 

might not require the use  

of modularity. 

It is believed that the low heterogeneity of customers’ needs 

of a single market segment might not require the use of 

modularity to provide variety. 

It has been emphasized in the method’s delimitation that the 

multiple market segments can amplify the benefits of design 

modular product families. 

MDM version 6 

L17 3 K. Hamdar  8. Evaluation 

of the 

artifacts. 

Cultural barriers preventing 

the method’s 

implementation. 

Like in any other method, the cultural barriers and the 

resistance to change might prevent the implementation of 

the MDM in organizations. 

It has been better defined the delimitation of MDM regarding 

the socio-technical aspects of an enterprise. 

MDM version 5 

L18 3 C. Vieiro 

L. Quitzrau 

 8. Evaluation 

of the 

artifacts. 

The possibility to design a 

new product family from 

the existing product 

structure. 

It has been observed that the proposed method is oriented to 

design completely new product families. However, there are 

many companies where the products have been evolving for 

decades, therefore it would not be reasonable to discard this 

experience. 

The MDM has been reorganized to redesign the existing 

families from a modular point of view as well as to design new 

modules, new families, and new generations of families. 

MDM version 4 

L19 3 L. Quitzrau 

A. Marques 

 8. Evaluation 

of the 

artifacts. 

The estimation of 

customers’ desired 

attributes (𝐴) in the future. 

 

It has been observed that the proposed method is oriented to 

design product families from the existing customers’ desired 

attributes (𝐴). However, since the products are designed in 

the present to be launched in the future, the MDM should 

estimate how the customers’ desired attributes in the future 

should be. 

It is believed that from the techniques adopted by the MDM it 

is possible to capture future needs. However, to explicit that, it 

was added an external input to the step 𝑆2.1 and its description 

has been improved in that direction. 

MDM version 4 

L20 3 A. 

Franceschini 

 8. Evaluation 

of the 

artifacts. 

Lack of techniques to 

define the technological 

trends to be adopted in the 

product family design. 

It has been identified the lack of techniques to define the 

technological trends to be adopted in the product family 

design. 

It has been added the technology roadmap (Phaal and Muller, 

2009) in the step 𝑆1.1. 

MDM version 4 

L21 3 A. Marques  8. Evaluation 

of the 

artifacts. 

Evaluation of the 

competing alternatives (𝐽) 

life-cycle before 

considering them into the 

product family design. 

It has been noted the possibility to include competing 

alternatives (𝐽) at the end of the life-cycle. This situation 

might influence the development process to be based on 

obsolete engineering attribute values (𝐸𝑣). 

It has been included a piece of advice to choose competing 

alternatives (𝐽) at the beginning of the life cycle in steps 𝑆2.4 

and 𝑆3.5. 

MDM version 6 

L22 4 M. Salerno 

T. Betts 

T. Kull 

J. Hsuan 

 8. Evaluation 

of the 

artifacts. 

Unsuitability for small and 

some midsize enterprises. 

It is believed that small and some midsize enterprises might 

not have the knowledge base and organizational structure to 

support the method's implementation. 

It has been reinforced in the method’s delimitation its 

suitability for large companies. 

MDM version 6 

(continued) 
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Table C1. (continued). 

Id. Cycle Entered by  DSR Step Subject Situation Recommendations & Comments Implemented in 

L23 4 M. Salerno 

T. Betts 

J. Hsuan 

 8. Evaluation 

of the 

artifacts. 

Unsuitability for 

engineering-to-order 
(𝐸𝑇𝑂) enterprises. 

Although MDM can be used to change the production 

strategy of an enterprise, it is believed that it is not suitable 

for companies where the orders are not typically repeated on 

a large scale, i.e. Engineering-to-order (𝐸𝑇𝑂). 

The method’s delimitation has been updated excluding the 

ETOs companies from its boundaries. 

MDM version 6 

L24 4 K. Otto 

R. Scalice 

R. Bagno 

 8. Evaluation 

of the 

artifacts. 

The method’s evaluation 

process. 

It has been claimed that the results obtained through 

practical applications, in real or made-up cases, are more 

relevant than the experts' opinions. 

This research has tried to mix the practical applications along 

with the experts’ opinions to make the evaluation process more 

robust. 

DSR methodology 

L25 4 R. Bagno  8. Evaluation 

of the 

artifacts. 

Product design performed 

from a deterministic 

perspective for static 

scenarios. 

It has been noted the assumption of dealing with product 

family design from a deterministic perspective and only 

considering static scenarios. This is not incorrect but needs 

to be clear in the delimitation of the method. 

It has been assumed as a limitation of the MDM so far. 

Additionally, the method’s delimitation has been updated to 

make it more explicit. 

MDM version 6 

and future research 

on product family 

design 

L26 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

Market segmentation 

concurrently performed 

with the strategic product 

family planning.  

It has been perceived that the market segmentation (𝑆1.3) 

can be performed concurrently with the strategic product 

family planning (𝑆1.1). 

No action has been taken. MDM version 5 

L27 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

Random index (𝑅𝐼) for 

comparison matrices with 

more than 15 criteria in 

𝐴𝐻𝑃. 

It has been noted that the consistency ratio (𝐶𝑅) increases 

as the number of criteria grow. Besides that, the traditional 

random index (𝑅𝐼) proposed by Saaty (2008) does not 

support matrices with more than 15 criteria. 

It has been adopted the consistency system proposed by 

Alonso and Lamata (2006). 

 MDM version 6 

L28 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

Unnecessary construction 

of choice sets in contexts of 

low data availability. 

It has been perceived that in contexts of low data 

availability, the utilization of 𝐴𝐻𝑃 in step 𝑆2.7 does not 

require the construction of the choice set in step 𝑆2.5.  

It has been added a bypass from the step 𝑆2.4 to 𝑆2.6.  MDM version 6 

L29 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

Difficulty to obtain the 

engineering attribute values 
(𝐸𝑣) of complex competing 

alternatives (𝐽).  

It has been identified the difficulty to obtain all engineering 

attribute values (𝐸𝑣) of competing alternatives (𝐽), mainly 

when they are complex, i.e. robotic palletizers. As a result, 

these missing values might penalize the choice probability 

of its corresponding alternatives. 

To relax this penalization, for those competing alternatives (𝐽) 

with missing values, the same engineering attribute values 
(𝐸𝑣) of the variant configured by the mathematical model have 

been considered.  

 MDM version 6 

L30 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

Difficulty to obtain the 

price (𝑃) of complex 

competing alternatives (𝐽).  

It has been identified the difficulty to obtain the price (𝑃) of 

competing alternatives (𝐽), mainly when they are complex, 

i.e. robotic palletizers.  

In such cases where the price is not available, it has been 

suggested estimating the price thought the multiplication 

between a typical markup adopted in the market and the 

product’s variable cost (𝐶𝑣), i.e. 𝑃𝑖 = 𝑚𝑎𝑟𝑘𝑢𝑝. 𝐶𝑣𝑖. 

 MDM version 6 

L31 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

The need for data scaling 

when calculating the utility 

function (𝑊) from 𝐴𝐻𝑃. 

When calculating the utility (𝑊) from 𝐴𝐻𝑃, it has been 

noted that the difference in scale among the engineering 

attribute values (𝐸𝑣) might influence the results. In other 

words, without data scaling the utility function becomes 

deeply dependent on those attributes of higher magnitude. 

When using the 𝐴𝐻𝑃, it has been considered scaling the 

engineering attribute values (𝐸𝑣) before calculating the utility 
(𝑊) and the choice probability (𝑃𝑟). 

 MDM version 6 

L32 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

Mathematical 

imponderability when 

using negative weights (𝑤) 

obtained through the 𝐴𝐻𝑃 

to calculate the utility 

function (𝑊). 

It has been noted that some engineering attributes (𝐸) might 

assume a negative direction (−), i.e. “the lower the better”. 

In such cases, using negative weights (𝑤) retrieved from 

𝐴𝐻𝑃 to calculate the utility (𝑊) might results in 

counterintuitive values. 

The weights (𝑤) have been kept positive, and the inverse of 

the engineering attributes values (1 𝐸𝑣𝑖⁄ ) have been considered 

in the utility (𝑊) calculation. 

 MDM version 6 

(continued) 
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Table C1. (continued). 

Id. Cycle Entered by  DSR Step Subject Situation Recommendations & Comments Implemented in 

L33  L. Gauss  8. Evaluation 

of the 

artifacts. 

Sufficiency of the current 

definition of modular 

architecture. 

It has been identified that there might exist different levels 

of intensity in the relationship among the engineering 

attributes (𝐸) and design parameters (𝐷𝑃). This intensity 

might require new decomposition techniques as well as a 

new definition of what a modular architecture is. 

To accomplish the level of intensity an additional 

decomposition technique has been added, the Cluster 

identification algorithm (Kusiak and Chow, 1987). The 

definition of modular architecture has been suggested as future 

research opportunities. 

MDM version 6 

and future research 

on modularity 

L34 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

Variable cost estimation 
(𝐶𝑣) when historical data 

on product costing is not 

available. 

It has been perceived that companies not always have 

historical data on product costing, an issue that might 

prevent the utilization of the reasoning behind the pragmatic 

approach to product costing (Jiao and Tseng, 1999b). This 

situation tends to aggravate when new generations of 

product families are under development.  

The three-point estimate (Premachandra, 2001) and the request 

for quotation (Gümüş, 2014) techniques, have been added to 

the MDM framework.  

 MDM version 6 

L35 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

New design parameters 
(𝐷𝑃) might emerge from 

the conceptual layout’s 

formulation. 

It has been identified that new design parameters (𝐷𝑃) 

might emerge from the conceptual layout’s formulation. 

It has been added a feedback flow coming from step 𝑆3.7 to 

𝑆3.1. 

 MDM version 6 

L36 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

Unnecessary combination 

of design parameter 

instances (𝐷𝑃𝐼) to generate 

physical module 

candidates. 

It has been noted that the systematic combination of design 

parameter instances (𝐷𝑃𝐼) to generate physical module 

candidates, and then combining these module candidates 

into product family variants (𝑃𝐹𝑣) was unnecessary. That is 

because of the design parameter instance (𝐷𝑃𝐼) can be 

directly combined to generate the product family variants 
(𝑃𝐹𝑣).  

The step of combining the 𝐷𝑃𝐼 into physical modules 

candidates (𝑆3.11) has been eliminated from the MDM 

structure. 

 MDM version 6 

L37 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

The weights (𝑤) obtained 

through the 𝐴𝐻𝑃 cannot be 

used to calculate the choice 

probability (𝑃𝑟) in 

multinomial logit models.  

It has been identified a mathematical imponderability when 

using the weights (𝑤) obtained through the 𝐴𝐻𝑃 to 

calculate the choice probability (𝑃𝑟) in multinomial logit 

models. The problem is when the utility function (𝑊) tends 

to 0, the resulting choice probability (𝑃𝑟) does not tend to 0. 

It allows an extremely low utility variant (𝑃𝐹𝑣), or even a 

low utility competing alternative (𝐽) having a choice 

probability higher than 0%. 

When using the 𝐴𝐻𝑃, the utility has been assumed to be 

equals to the choice probability, i.e. 𝑊 =  𝑃𝑟. 

 MDM version 6 

L38 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

The tendency of the 

configuration model to 

adjust the price as much as 

possible during the 

optimization process. 

It has been noted that although the price (𝑃) has a negative 

influence on the choice probability (𝑃𝑟), the model 

presented the tendency to adjust it as high as possible to 

maximize the partial profit (𝑉𝑀𝑠). That is because the 

marginal increase in partial profit derived from the 

increment in price is more substantial than the one retrieved 

from the augmentation in choice probability. In contexts of 

low data availability, where the weights (𝑤) are estimated 

through the 𝐴𝐻𝑃, this undesired effect tends to aggravate as 

the number of customers' desired attributes (𝐴) increases. 

To overcome this limitation in contexts of low data 

availability, the alternative solution adopted was to consider 

the price as a parameter instead of a decision variable of the 

configuration model. In this sense, the price should be 

intentionally defined based on the strategy of product family 

positioning established at the step 𝑆1.1. 

 MDM version 6 

L39 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

Synthesis of the corporate 

strategy after the market 

segmentation.  

It has been identified that the results of the market 

segmentation should integrate the list of objective measures 

for product family development. 

The activity of synthesizing the corporate strategy into 

objective measures for product family development has been 

relocated from step 𝑆1.1 to 𝑆1.2.  

 MDM version 6 

(continued) 
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Table C1. (continued). 

Id. Cycle Entered by  DSR Step Subject Situation Recommendations & Comments Implemented in 

L40 5 L. Gauss 

D. Lacerda 

 8. Evaluation 

of the 

artifacts. 

Lack of practical guidance 

on artifact’s evaluation. 

It has been noted the lack of practical guidance on the levels 

of artifact evaluation. Although it has been tackled by FEDS 

(Venable, Pries-Heje and Baskerville, 2016) it still required 

more discussion in terms of evaluation dimensions. 

The definition of the artifact’s evaluation level has been 

suggested as future research directions on DSR. 

Future research on 

DSR. 

L41 5 L. Gauss  8. Evaluation 

of the 

artifacts. 

Different time exposure to 

artifact’s evaluation. 

It has been identified a decreasing tendency of the level of 

agreement (𝑘𝑓𝑟𝑒𝑒) among the testing cycles 2, 3 and 4. One 

of the reasons might be time exposure for the artifact’s 

evaluation that reduced from 12 hours in cycle 2, passing to 

1 hour in cycle 3, achieving 15 min. in cycle 4. 

Keep the same procedure and time exposure for the experts 

and scholars in the evaluation cycles. 

Future research on 

DSR. 

Table C2. Characterization of participants. 

Id. Respondents Characterization  
Students:   

STD.01 Rafael Kreling Process Engineering Manager at Docile (Brazil), with B.Sc. in Controls and Automation Engineering, and M.Sc. in Business Management. 

STD.02 Rogério Marciniak Engineering Manager at Visconti (Brazil), with B.Sc. in Electrical Engineering, and M.B.E. in Advanced Manufacturing. 

STD.03 Ricardo Semler Barroso Production Planning and Control Analyst at Metal Work (Brazil), with B.Sc. in Production Engineering, and M.B.E. in Advanced Manufacturing. 

STD.04 Lúcio de Lima Gehlen Sr. Electrical Design Engineer at Hercosul (Brazil), with B.Sc. in Controls and Automation Engineering, and M.B.E. in Advanced Manufacturing. 

STD.05 Thiarles Silva de Vargas Continuous Improvement Specialist at Paquetá (Brazil), with B.Sc. in Production Engineering, and M.B.E. in Advanced Manufacturing. 

STD.06 Volker Lübke Industrial Director at Gedore (Brazil), with B.Sc. in Mechanical Engineering, and M.B.E. in Advanced Manufacturing. 

STD.07 Nelso Luis Fagherazzi Executive Director at Infasul (Brazil), with B.Sc. in Mechanical Engineering, and M.B.E. in Advanced Manufacturing. 

STD.08 Vítor Costa Leivas Manufacturing Engineering Supervisor at Fimac (Brazil), with B.Sc. in Mechanical Engineering, and M.B.E. in Advanced Manufacturing. 

 Experts:  

EXP.01 Luiz Eduardo Quitzrau Product Engineering Supervisor at John Deere (Brazil), with B.Sc. in Mechanical and Electrical Engineering, and M.Sc. in Mechanical Engineering. 

EXP.02 Carlos Frederico Viero Former Engineering Director at Comil (Brazil), with B.Sc. in Mathematics, and Ph.D. in Production and Systems Engineering. 

EXP.03 Paulo Azola Product Development Manager at Embraer (Brazil), with B.Sc. in Mechanical Engineering, and Specialization in Aeronautical Engineering. 

EXP.04 Alexandre Marques da Rosa Product Engineering Manager at Ciber (Brazil), with B.Sc. in Mechanical Engineering, and Specialization in Health and Safety Engineering. 

EXP.05 Georgia Forneck Head of product information at Ciber (Brazil), with B.Sc. in Business Administration, and Specialization in Quality & Innovation. 

EXP.06 Rafael Loose Product Design Coordinator at Atlas (Brazil), with B.Sc. in Product Design, and M.B.A in Marketing. 

EXP.07 Kayam Hamdar Product Development Engineer at Electrolux (Brazil), with B.Sc. in Mechanical and Electrical Engineering. 

EXP.08 Sarah Amin de Lima Architecture Leader Air & Water Business at Whirlpool (Brazil), with B.Sc. in Mechanical Engineering, and M.B.A. in Project Management. 

EXP.09 André Schwarz Franceschini Head of Research and Development at Ciber (Brazil), with B.Sc. in Mechanical Engineering, and M.Sc. in Mechanical Engineering. 

EXP.10 Flavio Lima Vice-President of Quality & Total Customer Satisfaction America at Renault (Brazil), with B.Sc. in Mechanical Engineering. 

 Scholars:  

SCH.01 Flavio Issao Kubota Adjunct Professor of Mechanical Engineering at the Federal University of Parana - UFPR (Brazil), with Ph.D. in Production Engineering. 

SCH.02 Mario Sergio Salerno Full Professor of Production Engineering at the University of São Paulo - USP (Brazil), with Ph.D. in Production Engineering. 

SCH.03 Teresa Betts Associate Professor of Logistics and Supply Chain Management at Murray State University (USA), with Ph.D. in Production Operations Management. 

SCH.04 Thomas Kull Associate Professor of Supply Chain Management at Arizona State University (USA), with Ph.D. in Operations and Sourcing Management. 

SCH.05 Juliana Hsuan Associate Professor of Operations Management at Copenhagen Business School (Denmark), with Ph.D. in Operations Management. 

SCH.06 Katja Hölttä-Otto Associate Professor of Mechanical Engineering at Aalto University (Finland), with Ph.D. in Mechanical Engineering. 

SCH.07 Régis Kovacs Scalice Adjunct Professor of Mechanical Engineering at the Federal University of Santa Catarina - UFSC (Brazil), with Ph.D. in Mechanical Engineering. 

SCH.08 Raoni Barros Bagno Full Professor of Production Engineering at the Federal University of Minas Gerais - UFMG (Brazil), with Ph.D. in Mechanical Engineering. 

SCH.09 Hoda ElMaraghy Distinguished Professor of Mechanical Engineering at the University of Windsor (Canada), with Ph.D. in Mechanical Engineering. 
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Table C3. Mixed coding scheme. 

Id. Codes Definition Type  
Top terms:     

1.0 Pragmatic validity The evidence that the design produces the desired results (van Aken, Chandrasekaran and Halman, 2016). Categorical 

2.0 Practical relevance The contribution of design in addressing a significant field problem or exploiting a promising opportunity (van Aken, Chandrasekaran and Halman, 2016). Categorical  
Constructs:     

1.1 External environment The context in which the artifact can be used and its performance limits (Dresch, Lacerda and Antunes Jr, 2015). Categorical 

1.2 Internal environment The organization of internal mechanisms to achieve a particular goal in the external environment (Simon, 1962). Categorical 

1.3 Artifacts' evaluation Set of procedures to attest if the artifact produces the desired outcomes (Dresch, Lacerda and Antunes Jr, 2015). Categorical 

2.1 General utility The overall ability to address the problem under investigation. Categorical 

 Dimensions:   

1.1.1 (Q07) Company size The size of the company, i.e. small, midsize and large companies. Categorical 

1.1.2 (Q09) Production strategy The production strategy used for delivering goods, i.e. make-to-stock (MTS), assemble-to-order (ATO), make-to-order (MTO), and engineering to order 

(ETO) (Slack and Brandon-Jones, 2019). 

Categorical 

1.1.3 (Q11) Product development phases Phases compounding the product development process, i.e. planning, conceptual design, system-level design (Ulrich and Eppinger, 2012). Categorical 

1.1.4 (Q13) Product type Type of goods manufactured by an enterprise, i.e. consumer (durables), intermediate, and capital goods (OECD, 2008). Categorical 

1.1.5 (Q15) Single market segment A specific group of customers having similar characteristics (Kahn, 2012). Categorical 

1.1.6 (Q17) Multiple market segments Multiple groups of customers by which the market is segmented. Categorical 

1.2.1 (Q19) Steps' sufficiency The need for the method's steps to exist. Categorical 

1.2.2 (Q21) Steps' execution order Adequacy of the execution order of the method's steps. Categorical 

1.2.3 (Q23) Adequacy of feedback flows Adequacy of the feedback between the method's steps. Categorical 

1.2.4 (Q25) Applicability of techniques The ability of techniques to execute the method steps. Categorical 

1.2.5 (Q27) Suitability of qualitative 

techniques 

The reasoning of using qualitative techniques in contexts where the data are scarce or the cost to obtain it cannot be afforded by the company (low data 

availability). 

Categorical 

1.2.6 (Q29) Suitability of quantitative 

techniques 

The reasoning of using quantitative techniques in contexts where the data are available or the cost to obtain it can be afforded by the company (high data 

availability). 

Categorical 

1.2.7 (Q31) Applicability of existing tools The ability of existing tools (software) to operationalize the techniques. Categorical 

1.2.8 (Q33) Missing steps Steps that have not been considered in the method but should be. Categorical 

1.3.1 (NA) Artifact's evaluation The process of determining whether the artifact completely accomplish their function (Venable, Pries-Heje and Baskerville, 2016). Categorical 

2.1.1 (Q34) Customers' choice modeling The ability to mathematically model the customers' choice (Chen, Hoyle and Wassenaar, 2013). Categorical 

2.1.2 (Q36) Market-driven variants The capacity for generating product family variants that accomplish the customers' desired attributes. Categorical 

2.1.3 (Q38) Balance of market needs and 

profitability 

The ability to balance the accomplishment of market needs and the resulting profitability to achieve them. Categorical 

2.1.4 (Q40) Product family economic 

potential 

The ability to capture the economic potential of a product family. Categorical 

2.1.5 (Q42) Trade-off between variety and 

cost 

The capacity for providing product variety without sacrificing production efficiency (Simpson et al., 2014). Categorical 

2.1.6 (Q44) Utility The ability to build a product family structure by balancing the fulfillment of market needs and its resulting profitability, as well as providing its economic 

potential to the decision-maker. 

Categorical 

 Moderating variables:   

MV.01 Aesthetics requirements Products desired attributes related to aesthetics requirements, i.e. consumer durables. Open 

MV.02 Cultural barriers Cultural barriers (resistance of change) that prevent the method's implementation. Open 

MV.03 Manufacturing under the 

customer's drawings 

Products manufactured under the customer's drawings, i.e. intermediate goods. Open 

MV.04 Low heterogeneity Low heterogeneity of a single segment might not require the use of modularity to provide variety. Open 

MV.05 Uncertainty of estimated data The error of data estimated by domain knowledge. Open 

MV.06 Other existing techniques Other techniques or heuristics that might be used to execute the steps of the method. Open 

(continued) 
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Table C3. (continued). 

Id. Codes Definition Type 

 Moderating variables:   

MV.07 Convenience goods Goods that are purchased frequently and with a minimum of effort, i.e. food. Open 

MV.08 Willingness to modularization Step to evaluate the willingness of product modularity in product planning. Open 

MV.09 Method's complexity The difficulty or cost of executing the method's steps and techniques. Open 

MV.10 Lack of a design supporting 

system 

Lack of a design support system (software) encapsulating the method's steps and techniques. Open 

MV.11 Organizational immaturity Lack of knowledge base and organizational structure to support the method's implementation. Usually found in small and midsize enterprises (SME). Open 

MV.12 Redundant steps Different steps that have similar or the same function, i.e. functional and physical decomposition. Open 

MV.13 Future customers' needs Products' desired attributes that will be required by customers in the future. Open 

MV.14 Customers' satisfaction 

feedback 

Feedback evaluating the customers' satisfaction with the product family variants generated by the proposed method. Open 

MV.15 Bottom-up techniques Techniques used to design new modules, variants, and families from the existing product structures. Open 

MV.16 Future customers' needs Step or technique to predict future customers' needs. Open 

MV.17 Life-cycle of competing 

alternatives 

Step to evaluate the life-cycle of competing alternatives to composing the choice set. Open 

MV.18 Modularization as a function 

of production volume 

Step to evaluate if it is worth it to modularize the product family based on its production volume. Open 

MV.19 Regulatory standards Step to deal with regulatory standards in product development. Open 

MV.20 Management of change Step to deal with cultural issues preventing the implementation. Open 

MV.21 Strategic pricing definition Step to strategically define the price of product family variants in the view of the trade-of between the gross margin and market share. Open 

MV.22 Configuration management Step to manage the product family configuration structure. Open 

MV.23 Fixed costs The assumption of not considering the fixed costs may adversely affect results. Open 

MV.24 Price of competing 

alternatives 

Difficulty to obtain the price of competing alternatives. Open 

MV.25 Clarify the design strategy Make the design strategy clear, i.e. top-down or bottom-up. Open 

MV.26 Uncertainty of cost estimation The error associated with estimating costs at early design stages. Open 

MV.27 Technological trends Step or technique to define the technological trends to be adopted in the product family design. Open 

MV.28 Complex products The complexity of the good being designed in terms of the number of components and assemblies, i.e. smartphones, automobile modules (engine, gearbox, 

etc.). 

Open 

MV.29 Low scale orders Orders that are not typically repeated on a large scale, i.e. Engineering-to-order (ETO). Open 

MV.30 Qualitative techniques Techniques that capture the same value as the quantitative ones but with less time and effort requirements. Open 

MV.31 Modularity maturity level Step to analyze the modularity maturity level of the company to define which subsequent steps of the method should be used. Open 

MV.32 Uncertainty of market size 

estimation 

The error associated with estimating market size. Open 

MV.33 Practical application The results obtained through practical applications are more relevant than the experts' opinions. Open 

MV.34 Static scenarios under a 

deterministic perspective 

The assumption of dealing with product family design from a deterministic perspective and only considering static scenarios. Open 

MV.35 Divergent key performance 

indicators (KPI) 

Disconnected performance measures leading departments of the company to opposite directions. Open 
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APPENDIX D – ARTICLE 3 

Market-Driven Modularity (MDM) – Online-Based Questionnaire 

* Required 

Respondent Characterization: 

Q01. Email address * 

Q02. What is your full name? * 

Q03. What is your education level? * 

 Bachelor of Science (B.Sc.) 

 Master of Science (M.Sc.) 

 Doctor of Philosophy (Ph.D.) 

 Other: 

Q04. What is your professional/research area? * 

Q05. How long have you worked/researched in this area? * 

 Less than 5 years 

 Between 5 and 10 years 

 Between 10 and 15 years 

 More than 15 years 

Q06. Which type of product do you currently work with? (only required for 

practitioners) 

 Consumer goods (durables), i.e. durable products that people buy for their use 

 Intermediate goods, i.e. products used in the production of other goods 

 Capital goods, i.e. equipment used to produce products or provide services 

 Other: 

External Environment of Usage: 

Q07. Do you agree that the MDM method can be adopted by small, midsize, and large 

companies? * 

 Disagree 

 Partially agree 

 Totally agree 

Q08. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q09. Do you agree that the MDM method can be used by companies that operate under 
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the MTS, ATO, MTO and ETO strategies? * 

Make-to-stock (MTS), Assemble-to-order (ATO), Make-to-order (MTO), and Engineering-to-order (ETO). 

 Disagree 

 Partially agree 

 Totally agree 

Q10. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q11. Do you agree that the MDM method can be incorporated in the early stages of the 

product development process, such as planning, conceptual design, and system-level 

design? * 

 Disagree 

 Partially agree 

 Totally agree 

Q12. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q13. Do you agree that the MDM method can be used for designing consumer 

(durables), intermediate, and capital goods? * 

 Disagree 

 Partially agree 

 Totally agree 

Q14. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q15. Do you agree that the MDM method can be used to conceptually design a product 

family for a single segment? * 

 Disagree 

 Partially agree 

 Totally agree 

Q16. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q17. Do you agree that the MDM method can be used to conceptually design a product 

family for multiple segments? * 

 Disagree 

 Partially agree 

 Totally agree 

Q18. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 
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Internal Functional Environment: 

Q19. Do you agree that all steps of the MDM method are required? * 

 Disagree 

 Partially agree 

 Totally agree 

Q20. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q21. Do you agree that the execution order of the MDM steps is adequate? * 

 Disagree 

 Partially agree 

 Totally agree 

Q22. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q23. Do you agree that the feedback flows between the MDM steps are adequate? * 

 Disagree 

 Partially agree 

 Totally agree 

Q24. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q25. Do you agree that all steps of the MDM method can be performed by the 

suggested techniques? * 

 Disagree 

 Partially agree 

 Totally agree 

Q26. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q27. Do you agree with the proposition of the MDM method of using more qualitative 

techniques in contexts of low data availability? * 

 Disagree 

 Partially agree 

 Totally agree 

Q28. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q29. Do you agree with the proposition of the MDM method of using more quantitative 

techniques in contexts of high data availability? * 

 Disagree 

 Partially agree 
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 Totally agree 

Q30. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q31. Do you agree that the techniques suggested by the MDM method can be 

performed by tools (software) available in organizations? * 

 Disagree 

 Partially agree 

 Totally agree 

Q32. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q33. Is there any step that has not been considered by the MDM method that in your 

opinion it should be? * 

General Utility of the Method: 

Q34. Do you agree that through the MDM method, it is possible to model customer 

preferences? * 

 Disagree 

 Partially agree 

 Totally agree 

Q35. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q36. Do you agree that through the MDM method, it is possible to generate product 

alternatives (variants) oriented to customer preferences? * 

 Disagree 

 Partially agree 

 Totally agree 

Q37. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q38. Do you agree that through the MDM method, it is possible to structure a product 

family from the selection of alternatives (variants) that balance the fulfillment of market 

needs and the resulting profitability to achieve them? * 

 Disagree 

 Partially agree 

 Totally agree 

Q39. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 
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Q40. Do you agree that through the MDM method, it is possible to assess the economic 

potential of a product family? * 

 Disagree 

 Partially agree 

 Totally agree 

Q41. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q.42 Do you agree that through the MDM method, it is possible to mitigate the trade-

off between variety and cost? * 

 Disagree 

 Partially agree 

 Totally agree 

Q43. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 

Q44. Do you agree that the MDM method is useful for organizations that develop, 

produce and market products? * 

 Disagree 

 Partially agree 

 Totally agree 

Q45. Regarding the previous question, in case of disagreement (1), or partial agreement 

(2), please inform the reasons? 
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APPENDIX E – ACCEPTANCE LETTER OF ARTICLE 1 

Dear Mr. Gauss, 
 
We are pleased to inform you that your manuscript, "Module-Based Product Family Design: 
Systematic Literature Review and Meta-Synthesis", has been accepted for publication in 
Journal of Intelligent Manufacturing. 
 
You will receive an e-mail from Springer in due course with regard to the following items: 
 
1.         Offprints 
2.         Colour figures 
3.         Transfer of Copyright 
 
Please remember to quote the manuscript number, JIMS-D-19-00710R1, whenever inquiring 
about your manuscript. 
 
With best regards, 
 
Andrew Kusiak 
Editor-in-Chief 
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