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ABSTRACT 

 

In the multi-objective optimization problems of manufacturing processes, the responses of 

interest are often significantly correlated. In addition to the multivariate nature of the problems, 

product demands, productive capacities, cycle times, the costs of labor, machines, and tools are 

just some of the many random variables involved in the optimization model. In particular, when 

using Design of Experiments (DoE) techniques and regression methods, the estimated 

coefficients for the empirical models - such as response surface models - are also stochastic. 

However, it has been observed that most of the articles published in this research area are 

limited to represent the stochastic variables in a deterministic way. Within this context, the 

present study aimed to propose the use of stochastic programming techniques combined with 

multivariate statistical methods including some process capability indices widely used in the 

industry, such as the 𝐶𝑝𝑘  capacity index and the Parts Per Million (𝑃𝑃𝑀) index. The use of the 

methods combined used resulted in the proposal of the Multivariate Chance-Constrained 

Programming (MCCP). To test the applicability of the MCCP method, a multi-objective 

optimization problem of the AISI 52100 hardened steel turning process was selected as a case 

study given its widespread use and relevance to the industry nowadays. As a starting point for 

this study, a set of experimental results obtained from a central composite design was used. The 

decision variables were the cutting speed (𝑉𝑐), the feed rate (𝑓) and the depth of cut (𝑎𝑝). The 

responses of interest selected for this work were the total machining cost per part (𝐾𝑝), the 

material removal rate (𝑀𝑅𝑅), the tool life (𝑇), the average roughness (𝑅𝑎) and the total 

roughness (𝑅𝑡). After analyzing the data and building the mathematical models for the 

responses of interest, three approaches were carried out. In the first approach, the 𝐶𝑝𝑘  index 

included the calculation of the variance of the response surface model of 𝑅𝑎. In the second 

approach, the probability that 𝐾𝑝 is less than or equal to a predefined value was modelled as a 

stochastic objective function. Finally, the third approach described the application of the 

proposed MCCP method. In this approach, the 𝑃𝑃𝑀 index was calculated using a normal 

bivariate distribution for both 𝑅𝑎 and 𝑅𝑡. The main results of this research were: a) the 

demonstration and validation of an equation used to calculate the variance of a continuous, 

derivable and dependent function of stochastic variables; b) the analysis of the impact of seven 

stochastic industrial variables (setup time, lot size, machine and labor costs, insert changing 

time, tool holder price, tool holder life and insert price) on the cost of the process; c) finding 

that maximizing tool life may reduce cost in some cases – for example when using Wiper tools 

– but the change of the cutting conditions alone does not necessarily reduce the cost of the 

process, as in what occurred in the case study analyzed.  



iii 

LIST OF ACRONYMS 

 

AISI – American Iron and Steel Institute 

DOE – Design of Experiments  

GRG – Generalized Reduced Gradient 

ISO – International Organization for Standardization 

MCCP – Multivariate Chance-Constrained Programming 

MOP – Multi-objective Optimization Programming 

OLS – Ordinary Least Squares 

RSM – Response Surface Methodology 

SP – Stochastic Programming  

 

  



iv 

LIST OF FIGURES 

  

Figure 1.1 - General representation of a process and its elements ........................................... 2 

Figure 2.1 – Representation of a Pareto frontier for a bi-objective problem ............................ 9 

Figure 2.2 - Roadmap for conducting the response surface methodology .............................. 17 

Figure 2.3 - Central composite arrangement (CCD) for three input variables ........................ 17 

Figure 2.4 - Surface plot for Equation (2.15) ........................................................................ 18 

Figure 2.5 - Surface graph for the standard deviation of Equation (2.15) .............................. 25 

Figure 2.6 - Representation of the variables of the hard-turning process ............................... 32 

Figure 2.7 - Representation of the main decision variables of the turning process ................. 33 

Figure 2.8 – Cause and effect relationships between decision variables, stochastic variables and 

the cost ................................................................................................................................ 37 

Figure 2.8 - Measurement of average roughness 𝑅𝑎 ............................................................. 39 

Figure 3.1 – Steps of the multivariate chance-constrained programming method (𝑅max) ..... 40 

Figure 4.1 -Turning process covered in this work ................................................................. 44 

Figure 4.2 - Specimen (part) and measurements of the roughness 𝑅𝑎 and 𝑅𝑡........................ 44 

Figure 4.3 – 𝑇 as a function of 𝑉𝑐 and 𝑓............................................................................... 49 

Figure 4.4 – 𝑇 as a function of 𝑉𝑐 and 𝑎𝑝 ............................................................................ 49 

Figure 4.5 – 𝑇 as a function of 𝑓 and 𝑎𝑝............................................................................... 49 

Figure 4.6 – 𝑅𝑎 as a function of 𝑉𝑐 and 𝑓 ............................................................................ 49 

Figure 4.7 – 𝑅𝑎 as a function of 𝑉𝑐 and 𝑎𝑝 .......................................................................... 50 

Figure 4.8 – 𝑅𝑎 as a function of 𝑓and  𝑎𝑝 ............................................................................ 50 

Figure 4.9 – 𝑅𝑡 as a function of 𝑉𝑐 and 𝑓 ............................................................................. 50 

Figure 4.10 – 𝑅𝑡 as a function of 𝑉𝑐 and 𝑎𝑝 ......................................................................... 50 

Figure 4.11 – 𝑅𝑡 as a function of 𝑓 and 𝑎𝑝 ........................................................................... 50 

Figure 4.12 – 𝐸𝐾𝑝(x) as a function of 𝑉𝑐 and 𝑓 ................................................................... 55 

Figure 4.13 – 𝑆𝐷𝐾𝑝(x) versus 𝑉𝑐 and 𝑓 ............................................................................... 55 

Figure 4.14 – 𝐸𝐾𝑝(x) as a function of 𝑉𝑐 and 𝑎𝑝 ................................................................. 55 

Figure 4.15 – 𝑆𝐷𝐾𝑝(x) versus 𝑉𝑐 and 𝑎𝑝............................................................................. 55 

Figure 4.16 – 𝐸𝐾𝑝(x) as a function of 𝑓 and 𝑎𝑝 ................................................................... 56 

Figure 4.17 – 𝑆𝐷𝐾𝑝(x) versus 𝑓 and 𝑎𝑝 ............................................................................... 56 

Figure 4.18 - Pareto frontiers for approach 1 and for conventional optimization ................... 59 

Figure 4.19 - Pareto chart for the standardized effects of stochastic industrial variables........ 64 



v 

Figure 4.20 - Confidence intervals for 𝐾𝑝 for the two solutions obtained ............................. 66 

  



vi 

LIST OF SYMBOLS 

𝐱 Decision variable vector 

𝐗 Experimental matrix of inputs (with all terms of the response surface model) 

𝑥 Decision Variable (scalar) 

𝑖 Index 

𝑗 Index 

𝐳 Incontrollable variable vector (noises) 

𝑧 Incontrollable variable (noise) 

𝐘 Interest results vector 

y 
Vector of the responses measured for each experimental test for the same 

interest result 

𝑓(𝐱) Mathematical model of interest result (objective function or constraint) 

𝐅(𝐱) Vector of mathematical model of interest result 

𝐟(𝐱) Vector of mathematical model values that represent the same interest result 

𝛃 Vector of coefficients of response surface model 

𝛃̂ Estimator of 𝛃 

𝐚(𝐱) 
Vector containing decision variables and other terms that multiply  𝛃 to 

reform the response surface model 

𝐚′(𝐱) Transposed Vector 

∑  Sum 

𝑔(𝐱) Inequality constraint 

ℎ(𝐱) Equality constraint 

𝑤 Weight assigned to objective function 

𝑓𝑈(𝐱) Utopia value of objective function 

𝑓𝑁(𝐱) Nadir value of objective function 

𝑓(̅𝐱) Stepped objective function 

𝐸( ) Expected value 

𝜇 Expected value 

𝑉𝑎𝑟( ) Variance 

𝜎2 Variance 



vii 

𝜎 Standard Deviation 

𝐶𝑜𝑣( ) Covariance 

𝜎𝑥1𝑥2 Covariance between 𝑥1 and 𝑥2 

𝛁 Gradient vector 

𝚺 Variance and covariance matrix 

𝛆 Waste Vector 

𝜀 Residue (scalar) 

𝐈 Identity matrix 

𝐗−1 Inverse 𝐗 Matrix 

𝜃(𝑥) Probability density function 

𝑞(𝑥) Component of the normal probability density function 

𝜃𝑝(𝐱) Multivariate probability density function 

𝐶𝑝 Process capacity index (without displacement from the mean) 

𝐶𝑝 Process capacity index (considering the average shift) 

𝑈𝑆𝐿 Upper specification limit 

𝐿𝑆𝐿 Lower specification limit 

𝑃𝑃𝑀 Parts Per Million Index 

𝑉𝑐  Cutting speed 

𝑓 Advance 

𝑎𝑝 Cutting depth 

𝐻 Surface part hardness 

𝑉𝐵  Tool wear 

𝐾𝑝 Total cost per part of a machining process 

𝑀𝑅𝑅 Material removal rate 

𝑇 Tool life 

𝑅𝑎 Medium roughness 

𝑅𝑡 Total roughness 

𝑙𝑓 Workpiece length 

𝑑 Workpiece diameter 

𝑡𝑡 Total cycle time 

𝑡𝑐 Cutting time 

𝑡𝑠 Secondary time (part placement and inspection) 



viii 

𝑡𝑎 Tool approach and retraction time 

𝑡𝑝 Machine setup or setup time 

𝑍 Lot size (in piece units) 

𝑁𝑡 Number of tool changes 

𝑡𝑖 Insert change time 

𝐾𝑢𝑠 Machining labor cost 

𝐾𝑢𝑚  Machine cost 

𝐾𝑢𝑓 Tooling cost 

𝑆ℎ Hourly labor cost 

𝑆𝑚 Machine cost per hour 

𝐾𝑡ℎ Tool holder cost 

𝑁𝑡ℎ Toolholder life 

𝐾𝑖 Tool or insert cost 

𝑁𝑖 Tool or insert life 

  



ix 

LIST OF TABLES 

 

Table 4.1 - Chemical composition of parts (AISI 52100 steel) .............................................. 43 

Table 4.2 - Decision variables and their respective levels (encoded and decoded) ................ 45 

Table 4.3 - Decision variables and results of interest - CCD arrangement ............................. 46 

Table 4.4 - Analyses of correlations ry1y2  between the responses of interest ...................... 46 

Table 4.5 - Coefficients of the response surface models ....................................................... 48 

Table 4.6 - Industrial variables (deterministic and stochastic) ............................................... 53 

Table 4.7 - Partial Kp  derivatives in relation to industrial variables ..................................... 55 

Table 4.8 - Utopia and Nadir values for objective functions ................................................. 57 

Table 4.9 - Comparison between approach 1 and conventional optimization ........................ 59 

Table 4.10 - Comparison between the results of approach 1 and Campos et al. (2017) .......... 60 

Table 4.11 - Results in optimal cutting conditions in approach 2 .......................................... 62 

Table 4.12 - Individual impacts of industrial variables on the cost of the process ................. 63 

Table 4.13 - Solutions to Equations (4.22) and (4.23) ........................................................... 65 

Table 4.14 - Solutions and results of approach 3................................................................... 67 

  



x 

INDEX 

 

1. INTRODUCTION ............................................................................................................. 1 

1.1. Research justification ................................................................................................... 3 

1.2. Research question ........................................................................................................ 3 

1.2.1. Variance of response surface models................................................................. 4 

1.2.2. Multivariate nature of responses of interest ....................................................... 5 

1.2.3. The modeling of process capability indices as stochastic constraints ................. 5 

1.3. Objectives .................................................................................................................... 5 

1.4. Research classification ................................................................................................. 6 

1.5. Structure of this dissertation......................................................................................... 7 

2. THEORETICAL BACKGROUND .................................................................................... 8 

2.1. Multi-objective optimization ........................................................................................ 8 

2.1.1. The weighted sum method .............................................................................. 10 

2.2. Stochastic programming ............................................................................................ 11 

2.2.2. The variance of a continuous model dependent on random variables ............... 13 

2.3. Design of experiments (DoE) ................................................................................. 14 

2.3.1. Response Surface Methodology ...................................................................... 16 

2.4. The Ordinary Least Squares Method ...................................................................... 19 

2.4.1. RSM model coefficient randomness ................................................................ 21 

2.4.2. Response surface model variance .................................................................... 23 

2.5. Multivariate normal distribution ............................................................................. 25 

2.6. The generalized reduced gradient algorithm ........................................................... 26 

2.7. Process capability indices....................................................................................... 28 

2.7.1. Parts per million (PPM) .................................................................................. 30 

2.8. Monte Carlo simulation ......................................................................................... 31 



xi 

2.9. The hardened steel turning process ......................................................................... 31 

2.9.1. Productivity measures and turning process times ............................................ 33 

2.9.2. Total cost per part of the turning process ......................................................... 35 

2.9.3. The stochastic nature of industrial variables related to the process cost ........... 36 

2.9.4. Quality characteristics of the hard-turning process .......................................... 38 

3. MULTIVARIATE CHANCE-CONSTRAINT PROGRAMMING................................ 40 

4. CASE STUDY – AISI 52100 HARDENED STEEL TURNING PROCESS ................. 43 

4.1. Materials, machines and tools ................................................................................ 43 

4.2. Experimental planning and obtained responses ...................................................... 44 

4.3. Correlation analysis ............................................................................................... 46 

4.4. Mathematical modeling of the responses of interest ............................................... 47 

4.4.1. Construction of response surface models......................................................... 47 

4.4.2. Construction of mechanistic models ................................................................ 51 

4.5. Approach 1: Multi-objective optimization problem subject to a stochastic process 

capacity constraint ............................................................................................................ 56 

4.5.1. Scaling the objective functions ........................................................................ 56 

4.5.2. Formulation of the optimization problem ........................................................ 57 

4.5.3. Solving the optimization problem ................................................................... 58 

4.6. Approach 2: cost optimization considering stochastic industrial variables .............. 60 

4.6.1. Formulation of the optimization problem ........................................................ 61 

4.6.2. Validation of the process cost mathematical models ........................................ 61 

4.6.3. Solving the optimization problem ................................................................... 62 

4.6.4. Effects of industrial variables on the process cost ............................................ 62 

4.6.5. Minimum process cost versus maximum tool life ............................................ 64 

4.7. Approach 3: multivariate stochastic constraint (MCCP) ......................................... 66 



xii 

5. CONCLUSIONS .......................................................................................................... 69 

5.1. Research contributions ........................................................................................... 69 

5.2. Research limitations ............................................................................................... 70 

5.3. Recommendations for future work ......................................................................... 71 

APPENDIX A – Definitions of expected value and variance of linear combinations ............ 72 

APPENDIX B – Main vectors and matrices related to the case study ................................... 75 

APPENDIX C – Excel spreadsheets used in formulations and calculations of multi-objective 

optimization problems .......................................................................................................... 76 

APPENDIX D – Complete articles published in journals ..................................................... 77 

REFERENCES .................................................................................................................... 84 

 

 



1 

1. INTRODUCTION 

Uncertainty can naturally exist in almost any type of real problem (NOCEDAL; 

WRIGHT, 2006). In industry, product demands, production capacities, process times, labor 

costs, raw materials costs, and tool costs are just a few of the many random variables involved 

in industrial processes. Thus, in practical cases of optimization of industrial processes, the 

assumption that the problem inputs are deterministic data is rarely supported (KALL; MAYER, 

2011). In particular, the standard approach of replacing significantly random variables with 

their expected values can be justified only under specific conditions. In many applications, it 

can be demonstrated that such an approach is inadequate since the interest results are affected 

by the whole variability present in the input factors. Therefore, it is necessary to consider the 

random aspect of the practical cases of optimization in the formulation of the problem. As will 

be presented in the following chapters, this can be done with the use of stochastic programming 

techniques (DÍAZ-GARCÍA; RAMOS-QUIROGA; CABRERA-VICENCIO, 2005; TORRES 

et al., 2019a). 

In addition to this random aspect, optimization problems in industrial processes often 

include multiple results of interest (DÍAZ-GARCÍA; BASHIRI, 2014), which are often 

conflicting (GOMES et al., 2013). Cost reduction, productivity increase and quality assurance 

are some of the main objectives pursued simultaneously by companies. Therefore, multi-

objective optimization of processes, or Multi-objective Optimization Programming (MOP), 

stands out as one of the most used techniques in this research area. 

The present study focuses on the consideration of the stochastic nature of real MOP 

problems in manufacturing processes. In general, a process can be defined as a combination of 

activities that transform inputs (material, energy, information) into outputs (product, energy, 

information) (MONTGOMERY, 2017). In addition to these elements, there are input variables 

(controllable and uncontrollable) that can influence the results of interest (or output variables). 

The decision variables, also known as control variables or input factors, are represented by the 

vector 𝐱 = {𝑥1, 𝑥2, … , 𝑥𝑛}, and their values can be defined in order to optimize the process. The 

noises in vector 𝐳 = {𝑧1, 𝑧2, … , 𝑧𝑝}, in turn, are uncontrollable variables that can also influence 

the process. The results of interest are symbolized by 𝐲 = {𝑦1, 𝑦2, … , 𝑦𝑘}. Figure 1.1 presents 

the general elements of a process. 
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Figure 1.1 - General representation of a process and its elements 

Source: adapted from Montgomery (2017) 

 

Therefore, MOP aims to answer the following question: how is it possible to obtain 

optimal values for vector y by changing the values of x in view of the influence of z? 

MOP starts with the definition of the results of interest and the identification of the control 

variables that can potentially impact such results in a significant manner (MONTGOMERY, 

2017). Thus, it seeks to define the relationships between the decision variables and the outputs 

(or interest results). These relations are represented by the vector of objective functions 𝐅(𝐱) =

{𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑘(𝐱)}. Each function can be either a mechanistic or an empirical 

mathematical model. A mechanistic model is a definition - for example, the total cost of a 

process (DINIZ; MARCONDES; COPPINI, 2014), or a physical law, such as Newton's second 

law. An empirical model is built based on experimental data and using regression methods 

(MONTGOMERY, 2017). 

Empirical models are generally obtained using design of experiments (DoE) and 

mathematical modelling (OLIVEIRA et al., 2019). The DoE allows the analysis of the impact 

of the input variables and their interactions in the results of interest by defining a reduced 

number of experiments, which reduces the experimental costs (ANTONY, 2014). Among the 

DoE methods most applied to industrial processes, there is the response surface methodology 

(RSM), which consists of using statistical and mathematical techniques to model objective 

functions that depend on multiple input variables (MYERS; MONTGOMERY; ANDERSON-

COOK, 2016). 
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After the execution of the experiment, the coefficients of the models are estimated via 

regression methods such as the ordinary least squares (OLS) (MONTGOMERY; RUNGER, 

2018). If the models present adequate adjustments and residuals, they can be used in the 

formulation of the optimization problem, which are solved by search algorithms such as the 

generalized reduced gradient (GRG) (RAO, 2009). 

1.1. Research justification 

Many recently published articles present applications of optimization in manufacturing 

processes (ALOK; DAS, 2019; GAUDÊNCIO et al., 2019; JUNAID MIR; WANI, 2018; 

KUMAR et al., 2018; MEDDOUR et al., 2018; MIA et al., 2018; ROCHA et al., 2017; WANG 

et al., 2020). Oliveira et al. (2019) present a systematic literature review on optimization using 

RSM. The research included 49 articles published in the International Journal of Advanced 

Manufacturing Technology (IJAMT), one of the leading magazines in the field. 

However, it was observed that these studies generally disregard the stochastic nature of 

the input variables and the results of interest to the optimization problem. Therefore, even with 

a large number of recent publications in this area of research, it is still possible to identify some 

opportunities for scientific contribution to the area. 

In fact, the presence of uncertainty in results is shared by many economic and financial 

models, which may depend on future interest rates, product demands, and commodity prices 

(NOCEDAL; WRIGHT, 2006). For example, in the specific case of the total cost per piece of 

a turning process, setup times, lot sizes, and labor costs are some of the variables that influence 

the cost of the process (CAUCHICK-MIGUEL; COPPINI, 1996). Contrary to what many 

recently published studies consider, the parameters present in the cost function and in many 

others are random, and their variability influences propagates to the objective function. 

1.2. Research question 

Given the previously presented context, the main research question defined for the present 

research is: 

- how is it possible to include the stochastic and multivariate nature of the variables present in 

the optimization problems of manufacturing processes using the process capability indices most 

used by the industry? 

To answer this question, it is essential to investigate how the randomness present in the 

problem variables can be modelled. Such randomness that propagates to the variance of 

mathematical models is present not only in decision variables and in the noise factors, but also 
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in the coefficients of functions and constraints - in the case of empirical models. Therefore, the 

answer to the research question in this dissertation implies the study of more specific questions, 

which are detailed in sections 1.2.1 to 1.2.3. 

1.2.1. Variance of response surface models 

The second order polynomial model, represented by Equation (1.1), is one of the most 

used functions for modeling the results of interest in studies of RSM and optimization of 

manufacturing processes (OLIVEIRA et al., 2019). 

 

𝑦~𝑓(𝐱) =∑𝛽𝑖𝑥𝑖

𝑛

𝑖=1

+∑𝛽𝑖𝑖𝑥𝑖
2

𝑛

𝑖=1

+∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑖<𝑗

𝑛−1

𝑖=1

+ 𝜖 = 𝐚′(𝐱)𝛃 + 𝜀 (1.1) 

 

Where: 

y = result of interest; 

𝑓(𝐱) = objective function that represents the result of interest; 

𝐱 = [𝑥1, 𝑥2, … , 𝑥𝑛] = vector of decision variables; 

𝛽𝑖  = ith coefficient of the objective function estimated by regression methods; 

𝑥𝑖 = ith decision variable; 

𝐚(𝐱) = {1, 𝑥1, 𝑥2, … , 𝑥𝑖𝑥𝑗}  = vector consisting of all r terms (a constant 1, linear, quadratic 

terms and interactions) of the response surface model 𝑓(𝐱); 

𝛃 = {𝛽0, 𝛽1, 𝛽2, … , 𝛽𝑖𝑗} = vector of objective function coefficients; 

𝜀 = error between the true value of the y answer and the value predicted by the function f (x). 

 

The coefficients in 𝛃, commonly estimated by the OLS method, are normally distributed 

by definition and can still be correlated (TORRES et al., 2019b). Equation (1.1) results only in 

the expected value of 𝑓(𝐱) only if the expected values of 𝛃 are used. As previously mentioned, 

the vast majority of articles in this research area use only the expected values of the coefficients 

and therefore disregard the stochastic nature of 𝛃. 

Díaz-García, Ramos-Quiroga and Cabrera-Vicencio (2005) had already proposed several 

methods of stochastic programming (SP) for the formulation of multi-objective optimization 

problems involving response surface models. Abdelaziz (2012) also presented several 

approaches to multi-objective stochastic problems in which random variables can be present 

not only in objective functions, but also in constraints. However, even with several techniques 
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already available in the literature, no studies were found that applied such methods in 

mechanical manufacturing processes before the present research (TORRES et al., 2019a; 

TORRES et al., 2019b). 

Therefore, this dissertation also aims to answer a more specific research question in a 

particular case study: what is the impact of representing the variance of a response surface 

model 𝑓(𝐱) taking into account the variance of its 𝛃 coefficients? 

1.2.2. Multivariate nature of responses of interest 

The multi-objective character of most real optimization problems implies conflicts of 

interest among the responses of interest (GOMES et al., 2013). That is, improving the level of 

some responses results in the loss of another interest result. From a statistical point of view, this 

means that it is common for the responses in 𝐲 to be significantly correlated. In these situations, 

multivariate statistical methods should be used (JOHNSON; WICHERN, 2007). In fact, the use 

of multivariate statistics is particularly important when there are stochastic constraints 

involving random and correlated variables. 

1.2.3. The modeling of process capability indices as stochastic constraints 

Another aspect not yet seen in publications in this research area is the combination of 

stochastic programming methods and process capability indicators widely used by the industry. 

Among these indices, process capacity and the Parts Per Million (PPM) index (COSTA; 

EPPRECHT; CARPINETTI, 2018) stand out. Process capacity can be defined as the ratio 

between the tolerance of a certain quality characteristic and its natural process variation. In 

particular, the 𝐶𝑝𝑘   index considers the minimum capacity within the process, taking into 

consideration its performance relative to both specification limits separately. The Parts Per 

Million (PPM) index, on the other hand, consists of the number of non-conforming pieces 

produced per 1 million pieces. Multivariate statistical techniques have already been used to 

estimate process capacity levels (PERUCHI et al., 2018). However, no studies have yet been 

found that integrate stochastic programming methods, multivariate statistical techniques and 

quality indexes widely used in industry, such as 𝐶𝑝𝑘   and PPM. 

1.3. Objectives 

Given the relevance of the topic of multi-objective optimization for industry and 

academy, the general objective of this research is to propose alternatives for the use of stochastic 

programming techniques with multivariate statistical techniques and process capability indices 



6 

in the formulation of multi-objective optimization problems in manufacturing processes. 

Specific objectives include: 

- Propose the use of a general expression that represents the variance of a continuous objective 

function dependent on stochastic variables; 

- Propose the use of an expression that represents the variance of a response surface model; 

- Propose the inclusion of the process capacity and the Parts Per Million (PPM) indices as 

multivariate stochastic constraints in problems of multi-objective optimization of 

manufacturing processes considering the variability of the coefficients of the response surface 

model of quality characteristics; 

- In particular, this research also aims to test the hypothesis that, in the case of optimization of 

turning processes, the maximization of tool life only from the choice of machine parameters 

(cutting speed, feed, and cutting depth) does not necessarily contribute to reducing the cost of 

the process. 

1.4. Research classification 

Research can be classified from the perspective of its nature, its objectives, its approach 

and its method (MIGUEL et al., 2014). 

As for its nature, the present research is characterized as applied since the multi-objective 

stochastic optimization method is specifically proposed for the approach of manufacturing 

processes. In addition, the method was applied to a specific case study of experimental results 

that followed experimental design techniques and an application of the RSM. 

From the point of view of its objectives, the research is classified as explanatory. The 

reason is that this research aims to explain and quantify the influence of the variability present 

in the random variables and the coefficients of the mathematical models in the results of 

optimization problems. 

The quantitative approach is evidenced by multi-objective optimization techniques, 

stochastic programming and probabilities, multivariate statistics, and calculations of industrial 

parameters such as process capacity index, PPM index and the calculation of production costs. 

In its first stage, this research is strongly related to the experimental method. However, 

there was no execution of a new experiment. The experimental results used in this work to test 

and validate the proposed method was carried out by Campos et al. (2017). The purpose of this 

work consists of using mathematical modelling techniques that can complement each other. 

The main methods used in this research were multi-objective optimization, stochastic 

programming, and multivariate statistics. According to the classification by Miguel et al. 
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(2014), such methods are inserted in the modelling and simulation methodology. In addition, 

Monte Carlo simulation was used to validate the results obtained using the stochastic 

programming method proposed in this dissertation. 

1.5. Structure of this dissertation 

With regards to the remaining content of the present research, chapter 2 consists of a 

theoretical foundation on topics related to the research, such as multi-objective optimization, 

stochastic programming, design of experiments, among other mathematical and statistical 

techniques used in this work. The theoretical foundation also includes practical concepts about 

the hardened steel turning process and some of the most used indicators in the industry: the 𝐶𝑝𝑘  

and PPM indices. 

Based on the content presented in chapter 2, the method proposed and applied in this 

work, called the Multivariate Probabilistic Constraint Method, or Multivariate Chance-

Constrained Programming (MCCP) described in chapter 3, is presented. 

In order to apply and validate the proposed method, a real case study of the multi-

objective optimization of the AISI 52100 hardened steel turning process is presented in chapter 

4. This chapter also includes the discussions regarding the results obtained in three different 

approaches carried out in this research. 

Finally, chapter 5 presents the conclusions of this dissertation, also listing its scientific 

contributions, research limitations, and suggestions for future work.  
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2. THEORETICAL BACKGROUND 

2.1. Multi-objective optimization 

Multi-objective optimization (MOP) can be defined as the formulation of problems whose 

objective is to optimize at least two results of interest in a process or system (HUANG; GU; 

DU, 2006). As presented at the beginning of chapter 1, in multi-objective optimization, the 

results of interest are represented by mathematical functions, denoted as 𝑓𝑖(𝐱). Thus, the 

objective is to optimize vector 𝐅(𝐱) = {𝑓1(𝐱), 𝑓2(𝐱), … , 𝑓𝑘(𝐱)}, k≥2, where 𝐱 = {𝑥1, 𝑥2, … , 𝑥𝑛} 

is a vector composed of decision variables (RAO, 2009). Therefore, the general formulation of 

a multi-objective optimization problem can be written according to Equation (2.1) 

(NOCEDAL; WRIGHT, 2006): 

 

𝑀𝑖𝑛 𝐅(𝐱) = {𝑓1(𝐱), 𝑓2(𝐱), … , 𝑓𝑘(𝐱)} 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

ℎ𝑖(𝐱) = 0, 𝑖 = 1,2,… , 𝑝 

𝑔𝑗(𝐱) ≤ 0, 𝑗 = 1,2,… , 𝑞 

𝐱mín ≤ 𝐱 ≤ 𝐱máx 

(2.1) 

 

Where: 

ℎ𝑖(𝐱)  = equality constraints of the problem; 

𝑔𝑗(𝐱) = inequality constraints of the problem; 

𝐱mín, 𝐱máx = vectors composed, respectively, by the lower and upper limits for the decision 

variables in 𝐱, thus defining the solution space. 

 

The literature usually defines optimization problems as minimization problems in 

general formulations and for the search for optimal solutions using algorithms. Maximization 

functions can be multiplied by (-1) and then minimized. Using this definition, we have that a 

solution 𝐱∗ is called Pareto-optimal if there is no other solution 𝐮 that reduces the value of some 

objective function without causing an increase in at least another function. That is, if 𝐱∗ is a 

Pareto-optimal solution, then there is no other solution 𝐮 such that 𝑓𝑖(𝐮) ≤ 𝑓𝑖(𝐱
∗), 𝑖 =

1,2,… , 𝑘, with 𝑓𝑖(𝐮) ≤ 𝑓𝑖(𝐱
∗) in at least one objective 𝑖. The concept of a Pareto-optimal 

solution is important because conflicts between the results of interest are common in multi-

objective optimization problems (GOMES et al., 2013). Consequently, there is not only an 
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optimal solution in multi-objective optimization problems, but a set of Pareto-optimal solutions 

which define the so-called Pareto boundaries (KULTUREL-KONAK; SMITH; NORMAN, 

2006). Figure 2.1 below represents a Pareto frontier for the case of a bi-objective problem. 

 

 

Figure 2.1 – Representation of a Pareto frontier for a bi-objective problem 

Source: adapted from Vahidinasab and Jadid (2010) 

 

Equation (2.1) can be defined in several ways, depending on the formulation strategy 

used. Rao (2009) defines two types of strategies: prioritization and agglutination. The 

prioritization strategy defines one of the functions as the objective function while the other 

functions become constraints on the problem. The agglutination strategy consists of modelling 

a global function that includes all the functions to be optimized. According to Hwang E Masud 

(1979), the methods used to formulate optimization problems can still be classified as follows: 

- Methods without preference: methods in which there is no articulation of information 

regarding the preference between the results of interest (ROCHA et al., 2015a). The multi-

objective optimization problem is solved in a relatively simple way and the solution obtained 

is presented to the decision maker who can accept or reject it. Non-preferred methods include 

the Global Criterion method (MIETTINEN, 1998). 

- A priori methods: in these, the information of preference regarding the results of interest is 

articulated by the decision maker before solving the optimization problem (ROCHA et al., 

2015b). Goal programming (DAUER; KRUEGER, 1977) and lexicographic programming 

(RAO, 2009) are examples of a priori methods. 

- Interactive methods: these are methods in which the decision maker actively participates in 

the solution process, presenting their preferences gradually in each iteration. The 
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Tchebycheff method (BARIL; YACOUT; CLÉMENT, 2011), the NIMBUS method 

(ESKELINEN; MIETTINEN, 2012) and the interactive algorithms are examples of 

interactive methods. 

- A posteriori methods: are methods in which the preference information is given by the 

decision maker after the optimization process. After generating a set of Pareto-optimal 

solutions that make up the Pareto frontier, this set is presented to the decision maker who 

selects the most preferred solution (ROCHA, 2017). Some examples of methods include 

weighted sum, the 𝜀-constraint method, and the weighted metrics method (GOMES, 2013). 

Section 2.1.1 presents the method of weighted sums (WS), which was used in this 

research. 

2.1.1. The weighted sum method 

In the weighted sum method, the objective function is a linear combination between the 

vector 𝐅(𝐱) = {𝑓1(𝐱), 𝑓2(𝐱),… , 𝑓𝑘(𝐱)}  composed of individual objective functions and the 

vector 𝐰 = {𝑤1, 𝑤2, … , 𝑤𝑘} composed by the weights of each function, as presented in 

Equation (2.2) (RAO, 2009): 

 

𝑀𝑖𝑛 𝐹(𝐱) = 𝐰′𝐟(𝐱) =∑𝑤𝑖

𝑘

𝑖=1

𝑓𝑖(𝐱) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

ℎ𝑖(𝐱) = 0, 𝑖 = 1,2,… , 𝑝 

𝑔𝑗(𝐱) ≤ 0, 𝑗 = 1,2,… , 𝑞 

𝐱mín ≤ 𝐱 ≤ 𝐱máx 

(2.2) 

 

Equation (2.2) is hardly used in its original format, as the objective functions often have 

drastically different scales (e.g., efficiency between 0 and 1, and costs between 100 and 200 

thousand dollars). In these cases, when the original scales are maintained, the solution of the 

problem prioritizes the functions of greater magnitude, since they more significantly impact the 

global function. To avoid this unplanned prioritization, one of the alternatives is to equalize the 

scale of the objective functions. Equation (2.3) presents an alternative for it (TORRES et al., 

2019b): 
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𝑓𝑖̅(𝐱) =
𝑓𝑖(𝐱) − 𝑓𝑖

𝑈(𝐱)

𝑓𝑖
𝑁(𝐱) − 𝑓𝑖

𝑈(𝐱)
 (2.3) 

 

Where: 

𝑓𝑖(𝐱)  = the current value of function i; 

𝑓𝑖
𝑈(𝐱)  = the utopia value of function i, obtained by the individual optimization of the function; 

𝑓𝑖
𝑁(𝐱)  = the Nadir value of function i, corresponding to the worst value among all individual 

optimizations; 

When all objective functions are scaled, the objective becomes the minimization of the 

distances between the current values of each function and its ideal value obtained by the 

individual optimization of the same function. 

Section 2.2 presents the concepts and techniques of stochastic programming used in this 

study. 

2.2. Stochastic programming 

Stochastic Programming (SP) is a strategy for formulating optimization problems used to 

build objective functions and constraints whose coefficients or decision variables are described 

by random variables (BIRGE; LOUVEAUX, 2011). SP provides an important approach to 

linear programming under uncertainty that began to be developed in the 1950s and continues to 

be widely used until today (HILLIER; LIEBERMAN, 2014). The objective is to transform a 

stochastic problem into a deterministic problem, and this transformation depends on the 

probability distributions used to represent the stochastic variables and parameters. In its general 

formulation, a stochastic programming problem can be represented by Equation (2.4). The 

coefficients 𝑐𝑗, 𝐴𝑖𝑗 and 𝑏𝑗 are random variables with a known probability distribution. 

 

𝑀𝑖𝑛 𝑓(𝐱) = 𝐜′𝐱 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝐠(𝐱) = 𝐀′𝐱 ≤ 𝐛 

𝑥𝑗 ≥ 0 

(2.4) 

 

SP methods transform stochastic formulations into deterministic ones, by determining 

probability functions to incorporate the random nature of the variables. There are already 
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several methods of SP proposed in the literature (CHARNES; COOPER, 1959; DÍAZ-

GARCÍA; BASHIRI, 2014; DÍAZ-GARCÍA; RAMOS-QUIROGA; CABRERA-VICENCIO, 

2005; KALL; MAYER, 2011). The present study uses the following SP techniques: 

a) The chance-constrained programming approach (CHARNES; COOPER, 1959); 

b) An approach used for mechanistic models, linear or non-linear (TORRES et al., 2019a); 

c) An approach used in conjunction with the response surface methodology (DÍAZ-

GARCÍA; RAMOS-QUIROGA; CABRERA-VICENCIO, 2005). 

To demonstrate these propositions, it is important to present some statistical concepts and 

basic definitions about the expected value and the variance of random variables. Such concepts 

and definitions are described in Appendix A. Approaches (a) and (b) are presented in sections 

2.2.1 and 2.2.2 respectively. Although approach (c) is a particular case of (b), to describe it with 

sufficient clarity, it is necessary to first present some concepts about DoE, RSM and OLS, 

which is done in sections 2.3 and 2.4 respectively. 

 

2.2.1. Stochastic programming and the chance-constrained 

programming approach 

Consider the general problem presented in Equation (2.2). Suppose that the objective 

functions and the constraints of the problem are stochastic, that is, their coefficients are random 

variables. It is possible to transform the stochastic problem into a deterministic problem as long 

as the expected values and variances of the mathematical models can be calculated. Thus, 

Equation (2.2) can be rewritten, among other ways, as follows: 

 

𝑀𝑖𝑛 𝐹(𝐱) = 𝑤𝐸[𝑓1(𝐱)] + (1 − 𝑤)𝑉𝑎𝑟[𝑓1(𝐱)] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:  

𝑃[𝑓2(𝐱) ≤ 𝑢] ≥ 𝑝0 

𝐱mín ≤ 𝐱 ≤ 𝐱máx 

(2.5) 

 

In this case, one of the results of interest is symbolized by 𝑓1(𝐱). The objective is to 

simultaneously minimize the expected value – assuming it is a minimization function – and the 

variance of 𝑓1(𝐱). A second result of interest is represented by 𝑓2(𝐱). However, the constraint 

of the problem consists of a minimum probability that the value of 𝑓2(𝐱)  does not exceed the 

limit 𝑢. For this reason, such an approach is called the chance-constrained programming 

technique. 
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The expected value of a function 𝑓(𝐱) can be estimated using the expected values of its 

variables. The calculation of the variance of 𝑓(𝐱)  requires other mathematical calculations, as 

described in section 2.2.2 below. 

2.2.2. The variance of a continuous model dependent on random variables 

This section demonstrates the calculation of the variance of a function dependent on 

random variables (TORRES et al., 2019a). 

Suppose that 𝑓(𝐱)  is a function dependent on vector 𝐱 = {𝑥1, 𝑥2}, and that 𝑥1 and 𝑥2 are 

random variables. Expanding 𝑓(𝐱)  in a Taylor series, we have: 

 

𝑓(𝐱) = 𝑓(𝑥1, 𝑥2) = 𝑓(𝜇𝑥1 , 𝜇𝑥2) +∑(𝑥𝑖 − 𝜇𝑥𝑖)
𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥𝑖

𝑛=2

𝑖=1

|𝜇𝑥𝑖 (2.6) 

or 

𝑓(𝑥1, 𝑥2) − 𝑓(𝜇𝑥1 , 𝜇𝑥2) = (𝑥1 − 𝜇𝑥1)
𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥1
|𝜇𝑥1 + (𝑥2 − 𝜇𝑥2)

𝜕𝑓(𝑥1, 𝑥2)

𝜕𝑥2
|𝜇𝑥2 (2.7) 

 

Raising both terms in Equation (2.7) squared and applying the expected value operator, 

we have: 

 

𝐸[𝑓(𝐱) − 𝑓(𝛍)]2 = 𝐸 [(𝑥1 − 𝜇𝑥1)
𝜕𝑓(𝐱)

𝜕𝑥1
|𝜇𝑥1 +(𝑥2 − 𝜇𝑥2)

𝜕𝑓(𝐱)

𝜕𝑥2
|𝜇𝑥2]

2

 (2.8) 

Or 

𝑉𝑎𝑟[𝑓(𝑥1, 𝑥2)] = 𝐸 {[(𝑥1 − 𝜇𝑥1)
𝜕𝑓(𝐱)

𝜕𝑥1
|𝜇𝑥1]

2

+ [(𝑥2 − 𝜇𝑥2)
𝜕𝑓(𝐱)

𝜕𝑥2
|𝜇𝑥2]

2

} 

+𝐸 {2 [(𝑥1 − 𝜇𝑥1)(𝑥2 − 𝜇𝑥2)
𝜕𝑓(𝐱)

𝜕𝑥1
|𝜇𝑥1

𝜕𝑓(𝐱)

𝜕𝑥2
|𝜇𝑥2]} 

(2.9) 

 

By definition, 𝐸(𝑥1 − 𝜇𝑥1)
2
= 𝜎𝑥1

2  and 𝐸[(𝑥1 − 𝜇𝑥1)(𝑥2 − 𝜇𝑥2)] = 𝜎𝑥1𝑥2. Thus, 

Equation (2.9) can be rewritten as follows: 

𝑉𝑎𝑟[𝑓(𝐱)] = [
𝜕𝑓(𝐱)

𝜕𝑥1
]

2

𝜎𝑥1
2 + [

𝜕𝑓(𝐱)

𝜕𝑥2
]

2

𝜎𝑥2
2 + 2 [

𝜕𝑓(𝐱)

𝜕𝑥1
] [
𝜕𝑓(𝐱)

𝜕𝑥2
] 𝜎𝑥1𝑥2  (2.10) 

 

It is also possible to write Equation (210) in matrix format as follows, 
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𝑉𝑎𝑟[𝑓(𝐱)] = [
𝜕𝑓(𝐱)

𝜕𝑥1

𝜕𝑓(𝐱)

𝜕𝑥2
] [
𝜎𝑥1
2 𝜎𝑥1𝑥2

𝜎𝑥1𝑥2 𝜎𝑥2
2 ]

2

[
 
 
 
 
𝜕𝑓(𝐱)

𝜕𝑥1
𝜕𝑓(𝐱)

𝜕𝑥2 ]
 
 
 
 

= 𝛁′𝑓(𝐱)𝚺𝐱𝛁𝑓(𝐱) (2.11) 

 

Where 𝛁𝑓(𝐱) is the gradient vector of 𝑓(𝐱)  𝚺𝐱  is the variance and covariance matrix of the 

random variables in x. Finally, generalizing Equation (2.11) for the case of functions of n 

random variables, we have: 

 

𝑉𝑎𝑟[𝑓(𝐱)] =∑[
𝜕𝑓(𝐱)

𝜕𝑥i
]

2

𝜎𝑥𝑖
2

𝑛

𝑖=1

+ 2∑ ∑ [
𝜕𝑓(𝐱)

𝜕𝑥i
] [
𝜕𝑓(𝐱)

𝜕𝑥j
] 𝜎𝑥𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (2.12) 

 

Therefore, the variance of a function dependent on random variables can be calculated by 

Equation (2.13): 

 

𝑉𝑎𝑟[𝑓(𝐱)] = 𝛁′𝑓(𝐱)𝚺𝐱𝛁𝑓(𝐱) (2.13) 

 

As will be presented in section 2.4.3, the calculation of the variance of a response surface 

model is a particular case of Equation (2.13). The difference is that, in the case of response 

surface models, the variance is considered to be present in the coefficients 𝛃 of the response 

surface models, whereas x is a vector composed of deterministic decision variables. However, 

before demonstrating how the 𝛃 variance and covariance matrix is estimated, it is necessary to 

present some concepts related to design of experiments (DoE) and multiple linear regression, 

in particular, the method of ordinary least squares (OLS). Such issues are covered in sections 

2.3 and 2.4 respectively. 

2.3. Design of experiments (DoE) 

As presented in chapter 1, the relationships between control variables and some of the 

results of interest in manufacturing processes are typically unknown. Therefore, there are often 

no mechanistic mathematical models that satisfactorily represent the objective functions or 

constraints in optimization problems. For this reason, researchers often use the experimental 

method so that empirical models can be built. Montgomery (2017) defines an experiment as a 
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series of tests in which purposeful changes are made to the input variables of a process or system 

so that it is possible to identify the reasons for the changes observed in the response variables. 

However, conducting experiments in the manufacturing industry requires a high 

investment of resources, and thus, it is important that the tests are planned in order to reduce 

experimental costs and provide an adequate level of information about the investigated process. 

Faced with this need, different planned experimental strategies have been developed over time. 

This set of strategies came to be known as design of experiments (DoE). Gomes (2013) lists 

several applications of DoE techniques including the increase in process yield, the reduction of 

variability with consequent improvement in product quality, cost reduction, and reduction in 

the time of development of products and processes. DoE is considered fundamental and crucial 

in increasing the understanding of products and processes (ANTONY et al., 2010). 

According to Dean, Voss and Dragulic (2017), DoE has three basic principles: 

replication, blocking and randomization. Replication refers to the repetition of the same 

experimental conditions on similar objects. Blocking consists of dividing experimental tests 

into blocks so that the tests in each block can be compared under relatively similar experimental 

conditions. Finally, randomization is the random selection of objects or materials to prevent 

intended or unplanned bias from being introduced to the experiment. The first two principles 

are used to increase the accuracy of experiments, while the third has the function of reducing 

bias. 

Montgomery (2017) establishes the following sequence of steps for an experiment 

project: 

1. Recognition and definition of the problem; 

2. Selection of response variables; 

3. Definition of input factors or variables and their respective levels; 

4. Choice of experimental arrangement; 

5. Execution of the experiment; 

6. Statistical analysis of the data; 

7. Conclusions and recommendations. 

 

According to Tanco, Viles and Pozueta (2008), the main approaches to the 

implementation of DoE can be classified into three categories: classic DoE, Taguchi, and 

Shaining. The classic DoE is defined as the first strategies created to overcome the popular tests 

known as one-factor-at-a-time (OFAT) (ANTONY, 2014). The classic approach includes not 

only complete factorial and fractional factorial arrangements (GAITONDE et al., 2009), but 
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also central composite arrangements (Central Composite Designs - CCD) and Box-Benken 

arrangements, which are used by the Response Surface Methodology (RSM) (ALOK; DAS, 

2019). The Taguchi approach emphasizes the reduction of variability and proposes the use of 

orthogonal arrangements and the signal/noise ratio (MIA et al., 2018). The Shaining approach, 

in turn, consists of a set of methods used to solve problems progressively, that is, from a 

sequence of steps (SHAININ; SHAININ, 1988). 

This research uses the classic DoE approach, in particular, the response surface 

methodology described in section 2.3.1. 

2.3.1. Response Surface Methodology 

Response Surface Methodology (RSM) is defined by Myers, Montgomery and Anderson-

Cook (MYERS; MONTGOMERY; ANDERSON-COOK, 2016) as a collection of statistical 

and mathematical techniques used to develop, improve and optimize processes. Also, according 

to the authors, the main applications of RSM are in the industrial sector, particularly where 

many input variables potentially influence responses of interest such as performance measures 

or quality characteristics. Even with the existence of different methods found in the literature, 

RSM is shown as one of the most effective ways to carry out process optimizations (OLIVEIRA 

et al., 2019). 

Oliveira et al. (2019) reviewed 49 articles on RSM in the magazine with the highest 

incidence of publications on the topic. The survey was limited to articles between the years 

2014 and 2017. The objective was to establish practical guidelines and critical analyses of 

applications of the method. After identifying some common failures in several RSM 

applications, the authors proposed a sequence of steps so that the method is conducted 

efficiently, as shown in Figure 2.2. 

Some steps described in Figure 2.2 coincide with the seven steps proposed by 

Montgomery (2017). Step 3 mentions the factorial arrangement and central points, while step 

6A refers to axial points. All of these points are part of the Central Composite Design (CCD). 

The CCD is one of the arrangements that allows the identification of possible curvatures in the 

response surfaces, as it considers more than two different levels for each decision variable 

(MYERS; MONTGOMERY; ANDERSON-COOK, 2016). Figure 2.3 represents a CCD 

arrangement for the case of three decision variables. The cube containing the eight blue points 

consists of the factorial arrangement, the green point in the center of the cube represents the 

center points, and the axial points are the red points outside the cube. 
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Figure 2.2 - Roadmap for conducting the response surface methodology 

Source: adapted from Oliveira et al. (2019) 

 

 

Figure 2.3 - Central composite arrangement (CCD) for three input variables 

Source: adapted from Myers, Montgomery and Anderson-Cook (2016) 

 

 

With the results obtained from CCD arrangements, it is possible to build models that 

present curvature. As presented in section 1.2.1, Oliveira et al. (2019) found that the second 

order (or quadratic) polynomial model is widely used in studies of manufacturing processes 
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optimization. From quadratic models, it is possible to identify possible curvatures on the 

response surface. This model, already described in Equation (1.1), is presented again in 

Equation (2.14) because it is related to the concepts in the next sections. 

 

𝑦~𝑓(𝐱) = ∑𝛽𝑖𝑥𝑖

𝑛

𝑖=1

+∑𝛽𝑖𝑖𝑥𝑖
2

𝑛

𝑖=1

+∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑖<𝑗

𝑛−1

𝑖=1

+ 𝜖 = 𝐚′(𝐱)𝛃 + 𝜀 (2.14) 

 

 

Once constructed, the mathematical models of Equation (2.14) can be represented in the 

form of surface graphs in a given region of the solution space. Consider, for example, the 

following theoretical model composed of two decision variables: 

 

𝑓(𝐱) = 0,0653 + 1,0178𝑥1 + 0,9855𝑥2 + 0,9737𝑥1
2 + 0,9578𝑥2

2 + 0,9555𝑥1𝑥2 (2.15) 

 

The surface graph for the model described in Equation (2.15) corresponds to Figure 2.4. 

For problems with n > 2 decision variables, each 3D surface graph will present one 

response of interest at a time and their corresponding values of a pair of decision variables. 

 

 

Figure 2.4 - Surface plot for Equation (2.15) 

Source: the author 
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The objective of RSM is, therefore, to represent a vector composed of all the 𝑚 results 

for a giving response of interest y using a vector 𝑓(𝐱) as a mathematical model. A representation 

frequently used in RSM applications is Equation (2.16) (MYERS; MONTGOMERY; 

ANDERSON-COOK, 2016), 

 

𝐲 = 𝐟(𝐱) + 𝛆 = 𝐗𝛃 + 𝛆 (2.16) 

 

Where: 

𝐲 = vector composed of the experimental results of the response of interest; 

𝛆 = vector 𝑚 𝑥 1 of residues, where 𝑚 is the number of experiments performed; 

𝐗 = experimental matrix or design matrix, with dimension 𝑚 𝑥 𝑟 +  1, where 𝑟 is the total terms 

of the response surface model; 

𝛃 = vector 𝑟 𝑥 1 of coefficients. 

 

It is important to highlight the difference between the vector 𝐱 of decision variables and 

the experimental matrix 𝐗. The first column of the matrix 𝐗 is composed of numbers “1”, so 

that the multiplication 𝐗𝛃 results in the vector 𝐟(𝐱) of 𝑚 estimated values the same answer of 

interest in each test. The vector 𝐅(𝐱), in turn, is the vector composed of the objective functions, 

which represent k responses of interest, as presented in section 2.1. 

Equation (2.17) can be written in more detail as follows: 

 

[

𝑦1
𝑦2
⋮
𝑦𝑚

] = [

1 𝑥11 ⋯ 𝑥1𝑟
1 𝑥21 ⋮ 𝑥2𝑟
⋮ ⋯ ⋱ ⋮
1 𝑥𝑚1 ⋯ 𝑥𝑚𝑟

] [

𝛽0
𝛽1
⋮
𝛽𝑖𝑗

] + [

𝜀1
𝜀2
⋮
𝜀𝑚

] (2.17) 

 

The estimation of the coefficients in 𝛃 is done using regression methods. Among them, 

there is the method of ordinary least squares, described in section 2.4. 

 

2.4. The Ordinary Least Squares Method 

The ordinary least squares (OLS) method consists of estimating the 𝛃 coefficients in 

Equation (2.16) in order to minimize the sum of the squared residuals (ROCHA et al., 2017). 

More specifically, Montgomery and Runger (2018) define that the objective of the OLS method 
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is to determine values for the vector 𝛃̂ of least squares estimators which minimizes the sum of 

the squared residuals (L), defined as follows: 

 

𝐿 =∑𝜀𝑖
2

𝑚

𝑖=1

= 𝑆𝑆ε = 𝛆
′𝛆 = (𝐲 − 𝐗𝛃)′(𝐲 − 𝐗𝛃) = 𝐲′𝐲 − 𝟐𝛃′𝐗′𝐲 + 𝛃′𝐗′𝐗𝛃 (2.18) 

 

Where: 

ε = residuals between the real result of experiment i and its corresponding result by the 

regression model; 

𝛆 = vector m x 1 of residues, for the m experiments performed. 

 

The value of 𝐿 as a function of the choice of 𝛃̂  results in a second order convex equation. 

Therefore, there will be only one point of minimum: the global minimum. Thus, the least 

squares estimator 𝛃 ̂is the solution of Equation (2.19), 

 

𝜕𝐿

𝜕𝛃
= −2𝐗′𝐘 + 2𝐗′𝐗𝛃̂ = 0 (2.19) 

 

which can be simplified to 

 

𝐗′𝐗𝛃̂ = 𝐗′𝐲 (2.20) 

 

According to Rocha et al. (2017), Equation (2.19) refers to normal least square equations 

in their matrix form. Multiplying both sides of Equation (2.20) by the inverse of the matrix 𝐗′𝐗, 

equation (2.21) is obtained. 

 

𝛃̂ = (𝐗′𝐗)−𝟏𝐗′𝐲 (2.21) 

 

Once a response surface model is built, some important features must be assessed. The 

significance of the coefficients in 𝛃 can be verified through an Analysis of Variance (ANOVA) 

(CHRISTENSEN, 2016). ANOVA allows for verifying which terms are significant and which 

can be disregarded from the statistical point of view. The adjustment of the model is represented 

by the coefficient of determination 𝑅2, which represents the percentage of data observed in the 
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response that the mathematical model (GOMES, 2013) explains. Adjusted 𝑅2 is a correction of 

𝑅2 that takes into account the inclusion of little explanatory terms. Predicted 𝑅2 is related to 

the quality of the model’s forecasts. More detailed information on the procedures for checking 

the quality of the models is found in Paiva (2006).  

The following sections focus on detailing the stochastic nature of multi-objective 

optimization problems. The random nature of the coefficients in 𝛃 is demonstrated in section 

2.4.1. 

2.4.1. RSM model coefficient randomness  

According to Díaz-garcía and Bashiri (2014), assuming that the residuals in 𝛆 are 

normally distributed, the coefficient vector also follows a normal probability distribution. The 

calculations of the vector of expected values 𝐸(𝛃̂)  and the variance and covariance matrix 

𝐶𝑜𝑣(𝛃̂)  are presented as follows: using Equation (2.21), the expected value of estimator (𝛃̂) 

can be written as: 

𝐸(𝛃̂) = 𝐸[(𝐗′𝐗)−𝟏𝐗′𝐲] (2.22) 

 

Substituting 𝐲 in Equation (2.22) according to Equation (2.16), we have: 

 

𝐸(𝛃̂) = 𝐸[(𝐗′𝐗)−𝟏𝐗′(𝐗𝛃 + 𝛆)] (2.23) 

 

Multiplying and rearranging the terms of Equation (2.23), then: 

 

𝐸(𝛃̂) = 𝐸[(𝐗′𝐗)−𝟏(𝐗′𝐗𝛃 + 𝐗′𝛆)] = 𝐸[(𝐗′𝐗)−𝟏(𝐗′𝐗)𝛃] + 𝐸[(𝐗′𝐗)−𝟏(𝐗′𝛆)] (2.24) 

 

Since (𝐗′𝐗)−𝟏(𝐗′𝐗) = 𝐈  and 𝐸[𝛆] = 0, we have: 

 

𝐸(𝛃̂) = 𝐸(𝛃) + 𝐸[(𝐗′𝐗)−𝟏(𝐗′𝛆)] = 𝛃 + (𝐗′𝐗)−𝟏(𝐗′)𝐸(𝛆) = 𝛃 (2.25) 

 

Therefore, the expected values for the coefficients correspond to the vector 𝛃  itself, 

which is calculated by Equation (2.21). In addition, it is concluded that the estimators in 𝛃̂ are 

non-biased (or non-biased), that is, 𝐸(𝛃̂) = 𝛃. 

In turn, the variance and covariance matrix 𝐶𝑜𝑣(𝛃̂)  is defined by Equation (2.26): 
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𝐶𝑜𝑣(𝛃̂) = 𝐸 {[𝛃̂ − 𝐸(𝛃̂)]
′
[𝛃̂ − 𝐸(𝛃̂)]} (2.26) 

 

As 𝐸(𝛃̂) = 𝛃, as shown in Equation (2.25), we have: 

  

𝐶𝑜𝑣(𝛃̂) = 𝐸[𝛃̂ − 𝛃]
′
[𝛃̂ − 𝛃] (2.27) 

 

Using Equations (2.16) and (2.21), then: 

 

𝛃̂ = (𝐗′𝐗)−𝟏𝐗′𝐲 = (𝐗′𝐗)−𝟏[𝐗′(𝐗′𝛃 + 𝛆)] = (𝐗′𝐗)−𝟏[(𝐗′𝐗)𝛃 + 𝐗′𝛆]

= (𝐗′𝐗)−𝟏(𝐗′𝐗)𝛃 + (𝐗′𝐗)−𝟏(𝐗′𝛆) 
(2.28) 

 

Again, as (𝐗′𝐗)−𝟏(𝐗′𝐗) = 𝐈, we have: 

 

𝛃̂ = 𝛃 + (𝐗′𝐗)−𝟏(𝐗′𝛆) (2.29) 

 

Therefore, the difference 𝛃̂ − 𝛃 results in: 

 

𝛃̂ − 𝛃 = (𝐗′𝐗)−𝟏(𝐗′𝛆) (2.30) 

 

Using Equation (2.30) in Equation (2.27): 

 

𝐶𝑜𝑣(𝛃̂) = 𝐸{[(𝐗′𝐗)−𝟏(𝐗′𝛆)]′[(𝐗′𝐗)−𝟏(𝐗′𝛆)]} (2.31) 

 

Rewriting (𝐗′𝐗)−𝟏(𝐗′𝛆) in the form of (𝛆′𝐗)(𝐗′𝐗)−𝟏: 

 

𝐶𝑜𝑣(𝛃̂) = 𝐸{[(𝐗′𝐗)−𝟏(𝐗′𝛆)]′[(𝛆′𝐗)(𝐗′𝐗)−𝟏]}

= 𝐸{[(𝐗′𝐗)−𝟏(𝐗′𝐗)][(𝛆′𝛆)(𝐗′𝐗)−𝟏]} 
(2.32) 

 

Again, as (𝐗′𝐗)−𝟏(𝐗′𝐗) = 𝐈, then: 

 

𝐶𝑜𝑣(𝛃̂) = 𝐸[(𝛆′𝛆)(𝐗′𝐗)−𝟏] = 𝐸(𝛆′𝛆)(𝐗′𝐗)−𝟏 (2.33) 
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The scalar 𝛆′𝛆 corresponds to the estimated variance of the residuals, commonly 

represented by 𝜎̂2 and calculated by Equation (2.34) (ROCHA et al., 2017): 

 

𝐸(𝛆′𝛆) = 𝜎̂2 =
𝑆𝑆ε

(𝑚 − 𝑟)
=
𝐲′𝐲 − 𝛃′(𝐗′𝐲)

(𝑚 − 𝑟)
 (2.34) 

Where: 

𝑆𝑆ε = sum of squares of errors, 𝑆𝑆ε = ∑ 𝜀𝑖
2𝑚

𝑖=1  

 

Therefore, the matrix 𝚺𝛃 of variance and covariance of the coefficients of a response 

surface model is calculated by Equation (2.35), 

 

𝐶𝑜𝑣(𝛃̂) = 𝚺𝛃 = 𝜎
2(𝐗′𝐗)−𝟏 (2.35) 

 

where 𝜎2 = 𝑆𝑆ε (𝑚 − 𝑟)⁄  is the estimated variance of the residuals. 

Still according to Rocha et al. (2017), the confidence interval for each 𝛽𝑗 coefficient is 

given by Equation (2.36), where 𝐶𝑗𝑗 is the jjth element of matrix (𝐗′𝐗)−𝟏. 

 

𝛽̂𝑗 − 𝑡𝛼 2⁄ ,𝑚−𝑟√𝜎̂2𝐶𝑗𝑗 ≤ 𝛽̂𝑗 ≤ 𝛽̂𝑗 + 𝑡𝛼 2⁄ ,𝑚−𝑟√𝜎̂2𝐶𝑗𝑗 (2.36) 

 

Thus, it is noted that the response surface models built based on experiments have a 

random nature since the variance present in the coefficients propagates to the objective function. 

Section 2.4.2 below describes how the variance of a response surface model is calculated 

considering the 𝚺𝛃 matrix of variance and covariance of the coefficients. 

2.4.2. Response surface model variance 

According to what was demonstrated in section 2.4.1, the estimated coefficients for a 

response surface model are normally distributed with a vector of means 𝛃̂  estimated according 

to equation (2.21) and a matrix 𝚺𝛃 𝑟 𝑥 𝑟 of variance and covariance, as presented in Equation 

(2.35). 

It is important to remember that 𝐚(𝐱) is a vector composed of all 𝑟 terms (the constant 

1, linear, quadratic terms and second order interactions) of the response surface model 𝑓(𝐱), as 

presented in Equation (2.14). In this case, the variables in 𝐱 are considered deterministic and 
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the random variables are the coefficients in 𝛃. Thus, it is necessary to rewrite Equation (2.13) 

by replacing 𝐱 with 𝛃 in all elements, according to Equation (2.37): 

 

𝑉𝑎𝑟[𝑓(𝐱)] = 𝛁′𝑓(𝛃)𝚺𝛃𝛁𝑓(𝛃) (2.37) 

 

Equation (2.37) can be rewritten in more detail as follows: 

 

𝑉𝑎𝑟[𝑓(𝐱)] = [
𝜕𝑓(𝛃)

𝛽0

𝜕𝑓(𝛃)

𝛽1
…

𝜕𝑓(𝛃)

𝛽𝑖𝑗
]

[
 
 
 
 
𝜎𝛽0
2 𝜎𝛽0𝛽1 … 𝜎𝛽0𝛽𝑖𝑗

𝜎𝛽0𝛽1 𝜎𝛽1
2 … 𝜎𝛽1𝛽𝑖𝑗

⋮ ⋮ ⋱ ⋮
𝜎𝛽0𝛽𝑖𝑗 𝜎𝛽1𝛽𝑖𝑗 … 𝜎𝛽𝑖𝑗

2
]
 
 
 
 

[
 
 
 
 
 
 
𝜕𝑓(𝛃)

𝛽0
𝜕𝑓(𝛃)

𝛽1…
𝜕𝑓(𝛃)

𝛽𝑖𝑗 ]
 
 
 
 
 
 

 (2.38) 

 

Note that 𝜕𝑓(𝛃) 𝛽0⁄ = 1, 𝜕𝑓(𝛃) 𝛽1⁄ = 𝑥1 and so on. Note that the partial derivatives of 

the gradient of 𝛁𝑓(𝛃)  are equal to the terms of the vector of responses to 𝐚(𝐱). Thus, the 

variance of response surface models can be calculated from Equation (2.39): 

 

𝑉𝑎𝑟[𝑓(𝐱)] = 𝜎2𝐚′(𝐱)(𝐗′𝐗)−1𝐚(𝐱) (2.39) 

 

As an example, consider the response surface model presented in Equation (2.15) and 

whose expected value is illustrated in Figure 2.4. Suppose the mean square error 𝜎2  is 0.3694. 

Then, evaluating Equation (2.38) in space (−2,−2) ≤ 𝐱 ≤ (2,2), the following surface graph 

is obtained for the standard deviation of the function represented here by 𝑆𝐷[𝑓(𝐱)] and 

illustrated in Figure 2.5. 

As mentioned in chapter one, in many multi-objective optimization problems, the results 

of interest are significantly correlated in addition to stochastic. Therefore, the calculation of the 

probabilities of the constraints of stochastic problems must be carried out taking into account 

the multivariate nature of the responses of interest (Johnson; Wichern, 2007). In these cases, 

one of the most used alternatives is the use of multivariate probability distributions. Among 

them, the multivariate normal distribution, which is presented in section 2.5, stands out. 

Appendix A includes concepts and formulas for calculating the correlation between a pair of 

random variables. 
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Figure 2.5 - Surface graph for the standard deviation of Equation (2.15) 

Source: the author 

2.5. Multivariate normal distribution 

The normal probability distribution is one of the most used for representing continuous 

random variables. In fact, whenever a random experiment is replicated, the random variable 

corresponding to the average (or total) result of the replicates tends to be distributed according 

to a normal probability distribution (MONTGOMERY; RUNGER, 2018). According to the 

authors, for the univariate case with 𝜇 = 𝐸[𝑥] e 𝜎2 = 𝑉𝑎𝑟(𝑥), the normal probability density 

function, also known as Gaussian distribution and here represented by 𝜃(𝑥), is defined by 

Equation (2.40): 

 

𝜃(𝑥) =
1

√2𝜋𝜎2
𝑒−

1
2
𝑞(𝑥), 𝑥 ∈] −∞,∞[ (2.40) 

 

Where 𝑞(𝑥) = (𝑥 − 𝜇) 𝜎2⁄ . Note that 𝑞(𝑥) determines the absolute distance between 𝑥 

and μ on the scale of a standard deviation. Also note that it is possible to rewrite 𝑞(𝑥) as follows: 

 

𝑞(𝑥) = (𝑥 − 𝜇)(𝜎2)−1(𝑥 − 𝜇) (2.41) 

 

For multivariate problems, that is, problems whose responses of interest have significant 

correlations and are joined, it is necessary to use multivariate distributions. According to 



26 

Johnson and Wichern (2007), the definition of 𝑞(𝑥) according to Equation (2.41) can be 

extended to the case where 𝐱 is a vector of 𝑛 ≥ 2 decision variables, as defined in the beginning 

section 2.1. Thus, 𝛍 = {𝜇1, 𝜇2, … , 𝜇𝑛} is the vector of means for each variable in 𝐱, and 𝚺𝐱 is 

the variance and covariance matrix of the variables in 𝐱. Thus, we have: 

 

𝑄𝑝(𝐱) = (𝐱 − 𝛍)′𝚺𝑝
−1(𝐱 − 𝛍) (2.42) 

 

Thus, Equation (2.43) below refers to the calculation of the multivariate normal 

probability density function, 

 

𝜃𝑝(𝐱) =
1

(2𝜋)𝑝 2⁄ |𝚺|1 2⁄
𝑒−

1
2
𝑄𝑝(𝐱) (2.43) 

 

where 𝑥𝑖 ∈] − ∞,∞[ for 𝑖 = 1,2,… , 𝑛. 

 

Therefore, the probability 𝜑𝑝(𝐱)  of the vector x being within a range delimited by 𝐱𝑙 and 

𝐱𝑢  (lower and upper limits respectively) can be calculated by Equation (2.44): 

 

𝜑𝑝(𝐱) = ∫
1

(2𝜋)𝑝 2⁄ |𝚺|1 2⁄
𝑒−

1
2
𝑄𝑝(𝐱)𝑑𝐱

𝐱𝐔

𝐱𝐋

 (2.44) 

 

From the beginning of chapter 2 to the present section, statistical techniques were 

presented of the formulation of a multi-objective optimization problem. Once formulated, the 

problem is solved using search algorithms whose function is to identify the optimal solution 

within the set of viable solutions. Among such algorithms, there is the generalized reduced 

gradient (GRG), described in section 2.6. 

2.6. The generalized reduced gradient algorithm 

There are several optimization algorithms available to search for the optimal solution in 

optimization problems. The Generalized Reduced Gradient (GRG) is considered one of the 

most robust and efficient gradient algorithms (KÖKSOY; DOGANAKSOY, 2003). GRG can 

be used to solve several restricted and unrestricted nonlinear optimization problems. In addition, 

GRG can easily be accessed (KÖKSOY, 2008) and is already available for use in some 
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commercial software, as in the Microsoft Excel® Solver supplement. The name “reduced 

gradient” is related to its functioning: at each iteration, the constraints replace the objective 

function, decreasing the number of variables and, consequently, reducing the number of 

gradients (NASH; SOFER, 1996). 

GRG has three advantages over other gradient methods: 

1. If the search for the optimal solution ends before its confirmation, the last point found is 

viable since each point generated is viable and, generally, close to the optimum point; 

2. If the algorithm has a convergent sequence, the limit point guarantees at least a locally 

optimal solution; 

3. Most primal methods such as GRG are generally absolute; that is, they do not depend on 

a specific structure, such as convexity. 

Consider, for instance, the general formulation for a nonlinear optimization problem of 

an objective function described in Equation (2.45) (LASDON et al., 1978). First, if there are 

inequality constraints 𝑔𝑖(𝐱) ≤ 0, they should be transformed into equality constraints ℎ𝑖(𝐱) =

0, adding slack variables to each constraint ℎ𝑖, 𝑖 =  1, 2, . . . , 𝑘. 

 

𝑀𝑖𝑛 𝑓(𝐱) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑔𝑖(𝐱) ≤ 0 

ℎ𝑖(𝐱) = 0 

 

(2.45) 

The GRG algorithm is based on the transformation of constraints into an unrestricted one 

through direct substitution (GOMES, 2013). Thus, vector 𝐱 of decision variables is divided into 

two sub-vectors 𝐱𝐁 and 𝐱𝐍, with 𝐱𝐁 being the vector of basic (or dependent) variables and 𝐱𝐍 

being the vector of non-basic (or independent) variables. Rewriting Equation (2.45) 

distinguishing x in basic and non-basic variables, there is (CHEN; FAN, 2002): 

 

𝑀𝑖𝑛 𝑓(𝐱) = 𝑓[ 𝐱𝐁 ( 𝐱𝐍 ), 𝐱𝐍 ] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝐥𝑵 ≤ 𝐱𝐍 ≤ 𝐮𝐍  
(2.46) 

 

Where: 

𝐥𝑵 = lower limit for 𝐱𝐍; 

𝐮𝐍 = upper limit for 𝐱𝐍. 
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Starting from a viable starting point 𝐱𝑘 , the GRG algorithm defines a direction of 

movement to search for a better value for the objective function at each iteration. Such a 

direction of movement is defined by calculating the reduced gradient. This procedure is 

repeated with each iteration and the search for an optimal solution ends when the value of the 

reduced gradient reaches a pre-established minimum error (convergence criterion). 

The GRG algorithm was used in this study to obtain Pareto-optimal solutions for the 

multi-objective optimization problems addressed. Further details on the operation of the 

algorithm can be found in Rocha et al. (2017). 

Section 2.7 presents the concepts related to the 𝐶𝑝𝑘  and 𝑃𝑃𝑀 indexes, which are 

indicators widely used by the industry and which have already been included in multi-objective 

optimization problems, also combined with multivariate statistical techniques (PERUCHI et al., 

2018; WANG ; CHEN, 1998). 

2.7. Process capability indices 

Capability analysis is defined as a set of activities to quantify the variability of a process, 

to analyze the variability related to the requirements and specifications of the product and to 

support the reduction of this variability (MONTGOMERY, 2013). The calculation of the 

process capability is an important part of the DMAIC method (from English, Define, Measure, 

Analyze, Improve and Control). DMAIC is the sequence of phases in Lean Six Sigma projects 

(ANTONY, 2014), and the process capability refers to its uniformity. The variability of critical 

to quality (CTQ) characteristics is, therefore, a measure of process uniformity (COSTA; 

EPPRECHT; CARPINETTI, 2018). 

Process capability can be measured using different indices. Kotz and Johnson (2002) 

performed a literature review on process capacity indices and found 170 publications between 

1992 and 2000. One of the most used capacity indices is 𝐶𝑝, calculated by Equation (2.47), 

 

𝐶𝑝 =
𝑈𝑆𝐿 − 𝐿𝑆𝐿

6𝜎
 (2.47) 

 

Where: 

𝑈𝑆𝐿 = Upper Specification Limit; 

𝐿𝑆𝐿 = Lower Specification Limit. 
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The USL-LSL difference consists of the tolerance for the CTQ, which may also refer to 

the response of interest 𝑦. In the denominator of the result of 𝐶𝑝,  there is the so-called natural 

variation range of the process, assuming that the data are normally distributed. More 

specifically, the probability of obtaining a value belonging to the range corresponding to 6𝜎 

(six population standard deviations) centred on the mean is 99.73% for normally distributed 

data (COSTA; EPPRECHT; CARPINETTI, 2018). 

In practical applications, the population standard deviation σ is almost always unknown. 

For this reason, it must be replaced by an estimated 𝜎̂, which can be obtained by using different 

strategies. 

Costa, Epprecht and Carpinetti (2018) present four different ways to estimate 𝜎̂, as 

presented in Equation (2.48). Suppose we have a data set composed by 𝑚 samples of 𝑛 units 

each, and that 𝑁 = 𝑚𝑛. Then, 𝑋𝑖𝑗 is the value for the critical-to-quality characteristic of the jth 

observation in the ith subgroup. In Equation (2.48), 𝑆𝐴 represents the global unbiased estimator 

of 𝜎̂. 𝑆𝐵 refers to another unbiased estimator that used the expected values of each subgroup in 

order to estimate 𝜎̂. 𝑆𝐶  and 𝑆𝐷  are unbiased estimators that takes into account the variability 

present within the subgroups, using either the mean standard deviation 𝑆̅, as for 𝑆𝐶 , or the mean 

range 𝑅̅, as for 𝑆𝐷 . The constants 𝑐4 and 𝑑2 are dependent on the sample size 𝑛 for 𝑆𝐶  and 𝑆𝐷 , 

𝑚 for 𝑆𝐵 or 𝑚𝑛 for 𝑆𝐴. When using 𝑆𝐷 , and there is only one observation per subgroup, then 

the moving range is used to estimate 𝜎̂, such as  

 

𝜎̂~

{
 
 
 
 
 

 
 
 
 
 
𝑆𝐴 =

1

𝑐4
√∑ ∑ (𝑋𝑖𝑗 − 𝑋̿)

2𝑛
𝑖=1

𝑚
𝑖=1

𝑚𝑛 − 1

𝑆𝐵 = [
1

𝑐4
√
∑ (𝑋𝑖̅ − 𝑋𝑖)2
𝑚
𝑖=1

𝑚 − 1
]√𝑛

𝑆𝐶 =
𝑆̅

𝑐4

𝑆𝐷 =
𝑅̅

𝑑2

 (2.48) 

 

 

For the use of Equation (2.47), in addition to the usual assumption of normality, it is 

assumed that the process is under statistical control and that the population average μ is centered 

between the specification limits, that is, 𝜇 = (𝑈𝑆𝐿 − 𝐿𝑆𝐿) 2⁄ . 
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The 𝐶𝑝 index does not allow for identifying the displacement between the average 

resulting from the process and its nominal value, also called the target value (or target) – note 

that the mean 𝜇 of the process is not present in Equation (2.47). In order to consider the 

displacement of the process average in relation to its target value, the 𝐶𝑝𝑘 , which the index 

calculated by Equation (2.49), is used in which the 𝐶𝑝𝑢  and 𝐶𝑝𝑙 are unilateral capacity indices. 

 

𝐶𝑝𝑘 = 𝑀í𝑛 (𝐶𝑝𝑢 =
𝑈𝑆𝐿 − 𝜇

3𝜎
, 𝐶𝑝𝑙 =

𝜇 − 𝐿𝑆𝐿

3𝜎
) (2.49) 

 

One limitation of the 𝐶𝑝𝑘  is that it only considers the worst case scenario for the process 

capability. The sigma level, also know as z benchmark, is an alternative to solve this problem, 

and its calculation is related to the parts per million (PPM) index, which is described in section 

2.7.1. 

2.7.1. Parts per million (PPM) 

The 𝐶𝑝𝑘  index is widely disseminated in the manufacturing industry as it is a key result 

in many Lean Six Sigma projects (ANTONY, 2014). The term six sigma is strongly related to 

the capacity index. According to Montgomery and Runger (2018), a process classified as “six 

sigma” is a process whose 𝐶𝑝𝑘  is greater than or equal to 2. At this level of process capacity, if 

there is a change in the process average of up to 1.5 standard deviations in relation to its target 

value, only 3.4 pieces will fail on average for every one million produced (ANTONY, 2014). 

This indicator is known as parts per million, or Parts Per Million (PPM). In addition to the 𝐶𝑝𝑘  

index, PPM is an indicator widely used in industry as it considers the expected value and the 

variance of the critical quality characteristic. The observed PPM is calculated by the simple 

division between the failed pieces observed in the study by the total of analyzed pieces, 

multiplying the result of this division by 106. The estimated PPM, in turn, assumes that data 

follow a certain distribution and can be calculated by Equation (2.50). 

 

𝑃𝑃𝑀 = 106 [1 − ∫ 𝜃(𝑥)𝑑𝑥

𝑈𝑆𝐿

𝐿𝑆𝐿

] (2.50) 

 

Where: 

𝜃(𝑥) = probability density function that represents the quality characteristic. 
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Section 2.8 presents some general concepts of Monte Carlo Simulation, which was used 

in this research to validate Equation (2.13). 

2.8. Monte Carlo simulation 

The term “Monte Carlo” is typically associated with the modelling and simulation process 

influenced by randomness (BRANDIMARTE, 2014). In this type of simulation, several random 

scenarios are generated, and the relevant statistics are computed to measure the performance of 

a decision policy or an asset value (LAW, 2015). The Monte Carlo simulation is classified as 

static as it is a representation of a system at a specific time (CHWIF; MEDINA, 2010). 

To carry out a Monte Carlo simulation, it is necessary to perform the following sequence 

of steps (BANKS et al., 2010): 

1. Definition of stochastic variables; 

2. Construction of the mathematical model of the response of interest, involving deterministic 

and stochastic variables; 

3. Generation of random scenarios; 

4. Measurement of statistical interest parameters; 

5. Analysis of decision-making performance. 

In this research, Monte Carlo Simulation was used to validate the proposed method of 

stochastic programming for data related to the selected case study. Among the manufacturing 

processes addressed by multi-objective optimization studies, the turning process of hardened 

steels stands out, which was the object of study in this research and is presented in section 2.9. 

2.9. The hardened steel turning process 

Turning is a process of removing material from a part's revolutionary movement in 

relation to its own axis and from its contact with a cutting tool (KLOCKE, 2011). The turning 

process of hardened steels is a particular case of turning, in which the parts have a hardness 

greater than 45 HRC (CAMPOS et al., 2017), more typically varying between 52 and 65 HRC 

(FERREIRA et al., 2016; GRZESIK, 2009).  

Traditionally, hardened steels were machined in grinding processes (BOUACHA et al., 

2014). However, advances in the manufacture of hardened steel - such as the hard-turning 

process - have contributed significantly to the quality of products (KUMAR et al., 2018; 

PAIVA et al., 2009; REVEL et al., 2016). For this reason, hard turning has been widely used 

in the industry. Many of the main mechanical components, such as gears, shafts and bearings, 

can be manufactured using hard-turning (ALOK; DAS, 2019). In fact, compared to grinding, 
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hard turning can have a similar, or even better surface finish (LIMA et al., 2005) and with a 

higher material removal rate (BARTARYA; CHOUDHURY, 2012). Other advantages of hard 

turning include reducing or eliminating the use of a coolant cutting fluid, reducing the process 

cost, increasing productivity, improving material properties and reducing energy consumption 

(GAITONDE et al., 2009; HUANG ; CHOU; LIANG, 2007; PERUCHI et al., 2018). 

Several types of hardened steels are machined in the turning process nowadays. Among 

them, AISI 52100 steel stands out as it is often used in the manufacturing of bearings, shafts 

and joints due to its mechanical and corrosion resistance (ALOK; DAS, 2019). Chinchanikar 

and Choudhury (2015) carried out a literature review on the machining of hardened steels in 

which AISI 52100 steel is highlighted among the most studied hardened steels. One of the 

possible reasons for this is that AISI 52100 steel is part of a set of alloys classified as “hard-to-

cut steel alloys” (ALOK; DAS, 2018). Such difficulty is mainly related to the availability and 

adequate selection of materials for the cutting tools and to the economic viability of the process 

(TORRES et al., 2019a). 

Figure 2.6 illustrates some of the main variables (input and output) of a hardened steel 

turning process. 

 

Figure 2.6 - Representation of the variables of the hard-turning process 

Source: the author 

 

The main decision variables (or machine parameters) considered in studies of optimization 

of hard turning processes are (CAMPOS et al., 2014): 

a) Cutting speed (𝑉𝑐): usually measured in meters per minute (m/min), it is the 

displacement of the uncut surface of the part in relation to the cutting edge of the tool 

(TORRES et al., 2016). 
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b) Feed rate (𝑓): it measures the displacement between the part and the tool at each 

revolution, commonly measured in millimeters per revolution (mm/rev.); 

c) Depth of cut (𝑎𝑝): it is the difference between the diameter of the cut part and the 

diameter of the uncut part, usually measured in millimeters (mm). 

Figure 2.7 illustrates the turning process and the three main decision variables previously 

described. Uncontrollable variables (noises), often include the level of tool wear 𝑉𝐵   (or flank 

wear), measured in millimeters, and the surface hardness 𝐻 of the work piece (PAIVA et al., 

2012), measured in HRC. However, there are studies that do not include noise analysis 

separately from the experiment responses, as in the case of the object of study selected for this 

research. In these cases, the variability arising from the noise is not separated from the decision 

variables and thus remains included in the mean square error of the model (𝜎̂2), calculated by 

Equation (2.34). 

The main responses of interest in a turning process can be classified into three categories: 

results of productivity, costs and quality. The results of interest considered in the present 

research are presented in sections 2.8.1 to 2.8.3 respectively. 

 

 

Figure 2.7 - Representation of the main decision variables of the turning process 

Source: Sandvick (2017) 

 

2.9.1. Productivity measures and turning process times 

For machining processes in general, one of the main productivity metrics is the Material 

Removal Rate (𝑀𝑅𝑅). In the case of the turning process, 𝑀𝑅𝑅 can be calculated from Equation 

(2.51) (DINIZ; MARCONDES; COPPINI, 2014): 
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𝑀𝑅𝑅 = 𝑉𝑐 . 𝑓. 𝑎𝑝 (2.51) 

 

Another measure related to productivity is the Cutting Time (𝐶𝑡), usually measured in 

minutes and calculated by Equation (2.52): 

 

𝐶𝑡 =
𝑙𝑓. 𝜋. 𝑑

100𝑓. 𝑉𝑐
 (2.52) 

 

Where: 

𝑙𝑓 = length of the part in millimeters; 

𝑑 = diameter of the part in millimeters. 

 

The cutting time is only a small part of all machining times. Considering the production of 

a batch of 𝑍 parts, the machining cycle is directly composed of the following activities (DINIZ; 

MARCONDES; COPPINI, 2014): 

1. Placement and fixation of the piece; 

2. Approach and positioning of the tool; 

3. Cut; 

4. Tool spacing; 

5. Inspection (if necessary) and removal of the part; 

In addition to these five direct activities, three indirect activities are also included: 

6. Preparation of the machine; 

7. Removal of the tool for its replacement; 

8. Replacement and adjustment of the new tool. 

 

Therefore, the total cycle time (𝑇𝑡) includes other times necessary for the execution of the 

process (all in minutes) in addition to the cut-off time (activity 3), as shown in Equation (2.53) 

(TORRES et al., 2019a): 

 

𝑇𝑡 = 𝐶𝑡 + 𝑡𝑠 + 𝑡𝑎 +
𝑡𝑝
𝑍
+
𝑁𝑡
𝑍
𝑡𝑖 (2.53) 

 

Where: 
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𝑡𝑠 = secondary time (activities 1 and 5); 

𝑡𝑎 = time of approach and removal of the tool (activities 2 and 4); 

𝑡𝑝 = time of setup or preparation of the machine (activity 6); 

𝑍 = lot size (in units of part); 

𝑁𝑡 = number of tool changes; 

𝑡𝑖  = insert change time (activities 7 and 8). 

Equation (2.54) is used to calculate 𝑁𝑡, 𝑇 is tool life, measured in minutes (TORRES et 

al., 2019b): 

 

𝑁𝑡 = 𝑀á𝑥 [0, 𝐼 (𝑍
𝐶𝑡
𝑇
− 1)] (2.54) 

 

Where: 

𝑇 = tool life (min). 

 

It is important to highlight that the tool life (𝑇) corresponds to the total time (in minutes) 

and is used in the process as it is related to both productivity and the cost of the process. As will 

be shown in chapter 4, maximizing tool life through the choice of decision variables does not 

necessarily reduce the process costs (TORRES et al., 2019a). In the sequence, section 2.8.2 

presents the main quality characteristics of the hard-turning process. 

2.9.2. Total cost per part of the turning process 

The total cost of machining a part is considered one of the most important aspects in 

manufacturing a product (KUMAR et al., 2018). The total cost includes manufacturing costs 

directly related to the process (costs of machines, labor and tools) and other indirect costs (costs 

of quality control, raw materials, indirect labor, etc.) (CAUCHICK-MIGUEL; COPPINI, 

1996). The cost of manufacturing a part is also defined by the sum of operating costs, tooling 

and tool changes per part (GAUDÊNCIO et al., 2019). 

Diniz, Marcondes and Coppini (2014) define the costs directly involved in the production 

of a piece according to Equation (2.55): 

 

𝐾𝑝 = 𝐾𝑢𝑠 + 𝐾𝑢𝑚 +𝐾𝑢𝑓  (2.55) 

 

Where: 
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𝐾𝑝 = production cost per piece; 

𝐾𝑢𝑠  = machining labor cost; 

𝐾𝑢𝑚 = machine cost; 

𝐾𝑢𝑓= tooling cost. 

 

Equations (2.56) to (2.58) show the calculations of 𝐾𝑢𝑠, 𝐾𝑢𝑚 and 𝐾𝑢𝑓, respectively: 

 

𝐾𝑢𝑠 = 𝑇𝑡
𝑆ℎ
60

 (2.56) 

 

𝐾𝑢𝑚 = 𝑇𝑡
𝑆𝑚
60

 (2.57) 

 

𝐶𝑡
𝑇
(
𝐾𝑡ℎ
𝑁𝑡ℎ

+
𝐾𝑖
𝑁𝑖
) (2.58) 

 

Where: 

𝑆ℎ  = hourly cost of labor, measured in dollars per hour (U $/h); 

𝑆𝑚 = cost per machine hour, in dollars per hour (U $/h); 

𝐾𝑡ℎ = tool holder cost (U$); 

𝑁𝑡ℎ  = tool holder life (in number of edges); 

𝐾𝑖  = cost of the tool or insert (U$); 

𝑁𝑖  = tool or insert life (in units). 

 

Therefore, the total cost of production per piece (𝐾𝑝) is calculated by Equation (2.59): 

 

𝐾𝑝 = 𝑇𝑡
(𝑆ℎ + 𝑆𝑚)

60
+
𝐶𝑡
𝑇
(
𝐾𝑡ℎ
𝑁𝑡ℎ

+
𝐾𝑖
𝑁𝑖
) (2.59) 

 

2.9.3. The stochastic nature of industrial variables related to the process cost 

Some variables related to the total cost of production per piece (𝐾𝑝) have a random nature 

and, for this reason, can be considered as noises in the process. This means that its 

representation should not be given in a deterministic way, but rather use probability 
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distributions or other stochastic models. Such variables, here called industrial variables, include 

setup time (𝑡𝑝), tool or insert change time (𝑡𝑖), production batch size (𝑍), labor and machine 

costs (𝑆ℎ + 𝑆𝑚), the tool holder cost (𝐾𝑡ℎ), the tool holder life and the tool or insert cost (𝐾𝑖). 

Figure 2.8 presents the relationship between the decision variables, which are deterministic, the 

stochastic industrial variables related to the cost and the total cost itself. 

Samaddar (2001) presents some evidence of how the setup time variance (𝑡𝑝) may affect 

a production system. Tas et al. (2019), in turn, argue that setup times are stochastic in practice; 

therefore, deterministic model solutions can compromise the quality of the solution if applied 

to real problems. The same authors also state that there is always an inherent variability in the 

execution time of a specific activity. Since the tool change time (𝑡𝑖) is also a setup activity, this 

time must be represented stochastically in the optimization problem. 

Additionally, an increasing number of companies have adopted the just-in-time 

production philosophy (LINN; BENJAMIN; WEI, 2000). As a result, the size of the production 

lots (𝑍) varies depending on the demand of each client, which is random (TEMPELMEIER; 

HILGER, 2015). 

 

 

Figure 2.8 – Cause and effect relationships between decision variables, stochastic variables and the cost 

Source: the author 

 

Canyakmaz, Özekici and Karaesmen (2019) studied the impact of stochastic item prices 

on the optimal inventory configuration. According to these authors, price uncertainty is one of 
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the most critical challenges that manufacturing companies face. Such uncertainties can be 

caused by unstable economies, crises and changes in exchange rates, among other factors. Thus, 

the cost of the tool holder (𝐾𝑡ℎ) and the cost of the tool (𝐾𝑖) can be included in the group of 

stochastic variables related to the total cost of production (𝐾𝑝). Finally, in real applications, 

predicting the service life of the 𝑁𝑡ℎ tool holder is extremely difficult. Nevertheless, this 

variable should be represented by a probability distribution (TORRES et al., 2019a). 

Other industrial variables present in the calculation of the total cost of production can also 

be considered random. However, the variability present in these variables can be considered 

negligible compared to the aforementioned variables. This is the case with the time of approach 

and removal of the tool in relation to the part, movement made automatically by the machine, 

and the secondary time (placement, removal of the part and inspection), activities that are 

commonly done very fast and in following a standardized procedure. 

2.9.4. Quality characteristics of the hard-turning process 

Lean manufacturing is a production system whose goal is to eliminate or at least reduce 

different kinds of wastes, such as transport, inventory, motion, waiting, overproduction, over-

processing and defects (OHNO, 1997). The present study is focused on the waste due to defects 

in the products, and such waste is strongly connected to the variability present in the process. 

Such variability can be included in an optimization problem and thus reduced by using 

stochastic programming. 

The quality characteristics most frequently assessed in studies of hardened steel turning 

processes are related to the machined surface. In fact, surface roughness measures stand out 

among the main results of interest in optimization studies in this research area (PAIVA et al., 

2012; PERUCHI et al., 2018). Next, the roughness measures used in this work are described: 

the average surface roughness (𝑅𝑎) and the maximum height of the irregularities (𝑅𝑡). 

- Average roughness (𝑅𝑎): also known as arithmetic mean deviation, it is one of the most used 

roughness measures in works related to the quality of turned parts. In addition, the average 

roughness is adopted by the Brazilian Standard as a measurement method. The result 𝑅𝑎 

consists of the arithmetic mean of the absolute vertical distances of the measured (effective) 

profile in relation to a median line drawn in a sampling length (AGOSTINHO; 

RODRIGUES; LIRANI, 1990). More specifically, 𝑅𝑎  corresponds to the mean of the 

absolute values of the 𝑛 measures of 𝑌 (𝑌1, 𝑌2, … , 𝑌𝑛) as illustrated in Figure 2.8. 
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Figure 2.9 - Measurement of average roughness 𝑹𝒂 

Source: adapted from Agostinho, Rodrigues and Lirani (1990) 

 

- Total roughness, or maximum height of the deviations (𝑅𝑡):  symbolized as 𝑅max   in some 

studies, it is defined as the distance between the highest and lowest points of the irregularity 

measured in the sample length. Figure 2.9 shows how 𝑅𝑡  is measured. 

 

 

Figure 2.9 - Measurement of the maximum height of irregularities (𝑅max) 

Source: adapted from Agostinho, Rodrigues, Lirani (1990)  
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3. MULTIVARIATE CHANCE-CONSTRAINT 

PROGRAMMING 

Based on the concepts and techniques presented in chapter 2, a Multivariate Chance-

Constrained Programming (MCCP) method is proposed. The sequence of MCCP steps is shown 

in Figure 3.1 and the method steps are detailed below. 

 

 

Figure 3.1 – Steps of the multivariate chance-constrained programming method (𝑹𝐦𝐚𝐱) 

Source: the author 

 

1. Literature review 

Studies published on the same process or system can provide important information for 

researchers or professionals who aim to improve or optimize their object of study. Therefore, 

the literature review on the main decision variables, uncontrollable variables, and results of 

interest, as well as the most used experimental levels for decision variables, is the first step in 

the method. It is also possible that an optimal or at least viable solution to the problem had 

already been published. 

2. Definition of the random variables 

Some stochastic variables may have a relevant impact on the results of interest and, for 

this reason, they should have their random nature considered in the optimization problem. Step 

1 (literature review) can assist in the definition of which variables should be stochastically 

modelled in the problem. 

3. Data collection 
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In the case of specific problems or problems that have not yet been addressed, it is 

necessary to obtain experimental results. In this step, the researcher has the option to conduct 

their own experiments. However, if the object of study has already been investigated through 

experimental procedures, one can start from the results of the experiment, which corresponds 

to the case of this research. 

4. Correlation analysis 

When there are multiple results of interest, it may be the case that such responses are 

significantly correlated. If so, it is necessary to use multivariate statistical techniques to 

calculate the probabilities for ranges of values of the responses of interest, either for objective 

functions or for constraints. Therefore, correlation analyses are necessary. 

5. Mathematical modeling 

In this phase, empirical models are constructed, which are mathematical models built 

based on experimental results and using regression methods. Some responses of interest, on the 

other hand, are already computed using mechanistic models. Such models are also selected at 

this stage. In the case of studies of optimization of manufacturing processes, the responses of 

interest related to the quality of the process can be represented by their 𝐶𝑝𝑘  capability indices. 

6. Stochastic multi-objective programming 

Once the input variables (deterministic and random) and the results of interest have been 

determined, the multi-objective optimization problem is formulated. Among the various 

possibilities, the alternative presented by Equation (3.1) is used in the present study: 

 

𝑀á𝑥 ∫ ∅ {𝐸[𝑓1(𝐱)],√𝑉𝑎𝑟[𝑓1(𝐱)]}

𝑓1
𝑢

𝑓1
𝑙

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

1 − ∫ ∅ {𝐸[𝑓2(𝐱)]√𝑉𝑎𝑟[𝑓2(𝐱)]}

𝑓2
𝑢

𝑓2
𝑙

≤ 𝑃𝑚í𝑛 

and/or: 

 

𝐶𝑝𝑘[𝑓3(𝐱)] =
𝑈𝑆𝐿𝑓3(𝐱) − 𝐸[𝑓3(𝐱)]

3√𝑉𝑎𝑟[𝑓3(𝐱)]
≥ 𝐶𝑝𝑘𝑓3

𝑚í𝑛  

𝐱mín ≤ 𝐱 ≤ 𝐱máx 

(3.1) 
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7. Problem solving and validation 

To solve the problem, search algorithms must be used, such as the GRG algorithm. In 

sequence, the solution found must be validated in some way, either by carrying out confirmation 

experiments, using simulation techniques such as Monte Carlo, or by comparing the solution 

obtained and solutions of similar problems. 

Chapter 4 presents the materials, experimental data, and three different approaches for 

the same case study: the AISI52100 hardened steel turning process. These approaches are 

variations of the MCCP strategy.  
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4. CASE STUDY – AISI 52100 HARDENED STEEL 

TURNING PROCESS 

The choice of the turning process in step 1 of the MCCP method was made based on the 

relevance of the process to the industry and the interest of the academy in research on this 

process, as presented in section 2.9. 

4.1. Materials, machines and tools 

The experimental results used in this research were obtained by Campos et al. (2017). In 

this experiment, a CNC lathe (Computer Numerical Control) of the Nardini brand, model Logic 

175, was used with a maximum rotation of 4000 rpm (revolutions per minute) and a cutting 

power of 5.5 Kw. The machined parts were made of AISI 52100 steel and prepared with an 

initial diameter 𝑑 = 49 mm and length 𝑙𝑓  = 50 mm. The chemical composition of steel is shown 

in Table 4.1. 

 

Table 4.1 - Chemical composition of parts (AISI 52100 steel) 

C Si Mn Cr Mo Ni S P 

1.03% 0.23% 0.35% 1.40% 0.04% 0.11% 0.00% 0.01% 

Source: Campos (CAMPOS et al., 2017) 

 

The parts were previously tempered and, after such heat treatments, the hardness of the 

H parts was 49 to 52 HRC, to a depth of 3 mm below the surface. The tool holder was used in 

conjunction with a negative geometry with ISO code DCLNL 1616H12 in addition to an entry 

angle of 95 degrees. Figure 4.1 shows the turning process covered in this case study. 

Ceramic straightening tools, also called wiper tools Al2O3 + TiC, with ISO CNGA 

120408 S01525WH geometry, were coated with a layer of titanium nitride (TiN). Such tool is 

recommended for finishing operations in hardened steels and in hardened cast iron in which the 

combination of wear resistance and good thermal properties are needed (CAMPOS, 2012). This 

geometry presents a better smoothing effect, which significantly improves the surface quality 

when compared to conventional tools and enables a productivity increase simultaneously with 

a higher feed rate. 

To measure the tool life (𝑇), wiper tools were used until their flank wear (𝑉𝐵) reached 0.3 

mm. This was the criterion adopted to determine the end of the tool's life. The (𝑉𝐵) result was 
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measured using a microscope. The 𝑇 values corresponded to the time required for (𝑉𝐵) to move 

from 0 to 0.3 mm in each test. 

 

Figure 4.1 -Turning process covered in this work 

Source: Campos (2011) 

 

The average (𝑅𝑎)  and total (𝑅𝑡)  surface roughness values were measured four times on 

each of the three lines A, B and C illustrated by points in Figure 4.2. The three lines loop the 

surface of the part around its axis. The four measurements were separated by 90 degrees on the 

same line. A portable Mitutoyo rugosimeter and model Surftest SJ-201P was used to measure 

𝑅𝑎 and 𝑅𝑡 in micrometers (µm). 

 

Figure 4.2 - Specimen (part) and measurements of the roughness 𝑹𝒂 and 𝑹𝒕 

Source: Campos (2011) 

4.2. Experimental planning and obtained responses 
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The decision variables chosen were the cutting speed (𝑉𝑐), the feed (𝑓) and the cutting 

depth (𝑎𝑝). Therefore, vector 𝐱 = {𝑥1, 𝑥2, 𝑥3}, is such that 𝑥1 = 𝑉𝑐 , 𝑥2 = 𝑓 and 𝑥3 = 𝑎𝑝. In this 

specific experimental data set, Campos et al. (2017) did not include the analysis of the impact 

of noise variables such as tool wear and the surface hardness of the parts. However, the 

variability from these noise variables is included in the mean square error (𝜎̂2) in this case 

study, as explained in section 2.9. The Central Composite Design (CCD), was used for the 

design of the experiment. 

The three decision variables were defined at two factor levels. Thus, 19 experimental 

conditions were necessary: eight factorial points (2𝑛 = 23 = 8), six axial points (2𝑘 = 2 ∗ 3 =

6), and a center point that was executed five times. The coded and decoded levels of the decision 

variables are shown in Table 4.2. The distance from the central point to each of the axial points 

was established as 𝜌 = 1.682 (√2𝑛
4

= √23
4

= 1.682). 

 

Table 4.2 - Decision variables and their respective levels (encoded and decoded) 

Decision Variable Unit Notation Levels 

  -1.682 -1 0 1 1.682 

Cutting Speed m/min 𝑉𝑐  186 200 220 240 254 

Feed rate mm/rev. 𝑓 0.13 0.20 0.30 0.40 0.47 

Cutting depth mm 𝑎𝑝 0.01 0.15 0.23 0.30 0.35 

Source: Campos et al. (CAMPOS et al., 2017) 

 

Table 4.3 shows the decision variables at their decoded levels and the results for the 

responses of interest. 

The values of 𝑇, 𝑅𝑎 and 𝑅𝑡 were measured after each test and, therefore, their 

mathematical models are empirical. The material removal rate (MRR) and the production cost 

per part (𝐾𝑝) were calculated based on their mechanistic models. It is important to highlight 

that the decision variables were considered deterministic in this study. The random variables 

considered were the 𝛃 coefficients of the response surface models (empirical) and some 

variables related to the cost of the process. 
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Table 4.3 - Decision variables and results of interest - CCD arrangement 

Test Decision Variables    Measured interest results     

𝑉𝑐  𝑓 𝑎𝑝    𝑇 𝑅𝑎 𝑅𝑡 𝑀𝑅𝑅 𝐾𝑝 

1 200 0.20 0.15   17.21 0.25 1.41 6.00 0.809 

2 240 0.20 0.15   11.37 0.27 1.72 7.20 0.807 

3 200 0.40 0.15   5.96 0.31 2.12 12.00 0.771 

4 240 0.40 0.15   4.48 0.30 2.15 14.40 0.771 

5 200 0.20 0.30   9.42 0.25 1.45 12.00 0.888 

6 240 0.20 0.30   7.37 0.25 1.58 14.40 0.871 

7 200 0.40 0.30   4.03 0.34 2.01 24.00 0.834 

8 240 0.40 0.30   6.10 0.29 1.99 28.80 0.727 

9 186 0.30 0.22   9.51 0.29 1.69 12.55 0.790 

10 254 0.30 0.22   6.86 0.26 1.81 17.14 0.767 

11 220 0.13 0.22   14.18 0.21 1.54 6.43 0.934 

12 220 0.47 0.22   4.12 0.31 2.54 23.26 0.777 

13 220 0.30 0.10   9.42 0.31 1.94 6.60 0.754 

14 220 0.30 0.35   4.92 0.31 1.74 23.10 0.864 

15 220 0.30 0.22   4.89 0.26 1.81 14.85 0.852 

16 220 0.30 0.22   5.00 0.26 1.71 14.85 0.852 

17 220 0.30 0.22   4.77 0.26 1.71 14.85 0.852 

18 220 0.30 0.22   5.01 0.26 1.71 14.85 0.852 

19 220 0.30 0.22    5.12 0.26 1.71 14.85 0.852 

Source: adapted from Campos et al. (2017) 

 

4.3. Correlation analysis 

From the values presented in Table 4.3, correlations analyses between the pairs of the five 

responses of interest (𝑇, 𝑅𝑎 e 𝑅𝑡, 𝑀𝑅𝑅 e 𝐾𝑝) were carried out. Using a 95% confidence level, 

it was possible to identify some significant correlations between the responses of interest as 

shown in Table 4.4. 

 

Table 4.4 - Analyses of correlations 𝒓𝒚𝟏𝒚𝟐  between the responses of interest 

    𝑇 𝑅𝑎 𝑅𝑡 𝑀𝑅𝑅 

𝑅𝑎 
Correlation 

𝑝-value 

-0.497    

0.031       

𝑅𝑡 
Correlation 

𝑝-value 

-0.585 0.720     

0.009 0.001     

𝑀𝑅𝑅 
Correlation 

𝑝-value 

-0.706 0.507 0.510   

0.001 0.027 0.026   

𝐾𝑝 
Correlation 

𝑝-value 

0.146 -0.595 -0.615 -0.246 

0.508 0.007 0.005 0.309 

Source: the author 
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Tool life (𝑇) has a negative correlation with the average roughness 𝑅𝑎 (𝑟 = -0.497) and 

the total roughness 𝑅𝑡 (𝑟 = -0.585). This means that the increase in 𝑇 tends to cause a decrease 

in both 𝑅𝑎 and 𝑅𝑡 . In fact, the lowest roughness values are generally obtained when the cut 

parameters - or decision variables (𝑉𝑐 , 𝑓, e 𝑎𝑝) - are set at their lowest levels. As a result, the 

cutting conditions are less aggressive, and the tool wear tends to be lower, which results in a 

longer 𝑇 life. However, another consequence of choosing low levels for cutting parameters is 

the decrease in process productivity, which is represented by the material removal rate (𝑀𝑅𝑅). 

This tradeoff between tool life and productivity is evidenced by the negative correlation 

between 𝑇 and 𝑀𝑅𝑅 (𝑟 = -0.706), and the positive correlations between 𝑀𝑅𝑅 and 𝑅𝑎 (𝑟 = 

0.507) and between 𝑀𝑅𝑅 and 𝑅𝑡 (𝑟 = 0.510). 

Therefore, the decision to use low levels for cutting parameter results in an increase in 

tool life and a decrease in roughness. On the other hand, this decision compromises process 

productivity and, as will be presented in section 4.6.5, can increase the total production cost of 

the process. 

4.4. Mathematical modeling of the responses of interest 

4.4.1. Construction of response surface models 

The mathematical models for 𝑇, 𝑅𝑎 and 𝑅𝑡 were built based on the results in Table 4.3 

and starting from the second order polynomial model, whose general formulation is presented 

again in Equation (4.1). Matrix 𝐗 and vectors 𝐚′(𝐱), 𝛃, and 𝐲 specific to this case study are 

presented in Appendix B. 

 

𝑦~𝑓(𝐱) =∑𝛽𝑖𝑥𝑖

𝑛

𝑖=1

+∑𝛽𝑖𝑖𝑥𝑖
2

𝑛

𝑖=1

+∑∑𝛽𝑖𝑗𝑥𝑖𝑥𝑗
𝑖<𝑗

𝑛−1

𝑖=1

+ 𝜖 = 𝐚′(𝐱)𝛃 + 𝜀 (4.1) 

 

The material removal rate (𝑀𝑅𝑅) and the total production cost per piece (𝐾𝑝) were 

calculated from their mechanistic models. Therefore, there is no need to build response surface 

models for such results. 

The method of Ordinary Least Squares (OLS) was used to obtain the expected values of the 

response surface models. The variances these mathematical models were determined using 

Equation (2.39) presented in chapter 2. 

- Expected values of response surface models 
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Equation (4.2) was used to obtain the expected values of the coefficients, that is, 𝛃̂ =

𝐸[𝛃]. 

 

𝛃̂ = (𝐗′𝐗)−𝟏𝐗′𝐲 (4.2) 

 

Table 4.5 shows the values obtained for the coefficients. Note that the models’ 

adjustments, estimated by the adjusted R square values (𝑅𝑎𝑑𝑗.
2 ), were all greater than 94%, which 

means that the models are satisfactory representations of the expected values of the responses 

of interest, symbolized as 𝐸[𝑓𝑖(𝐱)]. The substitutions of the terms of 𝛃 in Equation (4.1) results 

in Equations (4.3) to (4.5). 

 

Table 4.5 - Coefficients of the response surface models 

Notation 
 Values   

𝑇 𝑅𝑎 𝑅𝑡 

𝛽0 4.963 0.260 1.733 

𝛽1 -0.861 -0.007 0.048 

𝛽2 -3.055 0.028 0.278 

𝛽3 -1.440 0.000 -0.052 

𝛽11 1.115 0.005 -0.010 

𝛽22 1.456 0.000 0.092 

𝛽33 0.756 0.018 0.021 

𝛽12 1.060 -0.010 -0.054 

𝛽13 0.918 -0.008 -0.029 

𝛽23 1.435 0.005 -0.021 

𝑅𝑎𝑑𝑗.
2  99.74% 98.66% 94.35% 

𝜎̂2 3.51(10-2) 1.31(10-5) 4.32(10-3) 

Source: the author 

 

𝐸[𝑇(𝐱)] = 4.963 − 0.861𝑥1 − 3.055𝑥2 − 1.440𝑥3 + 1.115𝑥1
2 + 1.456𝑥2

2

+ 0.756𝑥3
2 + 1.060𝑥1𝑥2 + 0.918𝑥1𝑥3 + 1.435𝑥2𝑥3 

(4.3) 

 

𝐸[𝑅𝑎(𝐱)] = 0.260 − 0.007𝑥1 + 0.028𝑥2 + 0.000𝑥3 + 0.005𝑥1
2 + 0.000𝑥2

2

+ 0.018𝑥3
2 − 0.010𝑥1𝑥2 − 0.008𝑥1𝑥3 + 0.005𝑥2𝑥3 

(4.4) 
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𝐸[𝑅𝑡(𝐱)] = 1.773 + 0.048𝑥1 + 0.278𝑥2 − 0.052𝑥3 − 0.010𝑥1
2 + 0.092𝑥2

2

+ 0.021𝑥3
2 − 0.054𝑥1𝑥2 − 0.029𝑥1𝑥3 − 0.021𝑥2𝑥3 

(4.5) 

 

Figures 4.3 to 4.11 show the surface graphs of the responses (expected values) as a 

function of the decision variables (in pairs). 

 

  

Figure 4.3 – 𝑇 as a function of 𝑉𝑐  and 𝑓 Figure 4.4 – 𝑇 as a function of 𝑉𝑐  and 𝑎𝑝 

 

  

Figure 4.5 – 𝑇 as a function of 𝑓 and 𝑎𝑝 Figure 4.6 – 𝑅𝑎 as a function of 𝑉𝑐  and 𝑓 
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Figure 4.7 – 𝑅𝑎 as a function of 𝑉𝑐  and 𝑎𝑝 Figure 4.8 – 𝑅𝑎 as a function of 𝑓and  𝑎𝑝 

 

  

Figure 4.9 – 𝑅𝑡 as a function of 𝑉𝑐  and 𝑓 Figure 4.10 – 𝑹𝒕 as a function of 𝑽𝒄 and 𝒂𝒑 

 

Figure 4.11 – 𝑹𝒕 as a function of 𝒇 and 𝒂𝒑 

- Response surface model variances 

Table 4.5 also shows the estimated variances of the residuals, or mean square of errors 

(MSE), represented by 𝜎̂2 and calculated by Equation (4.6). 
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𝜎̂2 =
𝑆𝑆ε

(𝑚 − 𝑟)
 (4.6) 

 

Where: 

𝑆𝑆ε = sum of squares of the residuals, 𝑆𝑆ε = 𝛆′𝛆; 

𝑚 = number of observations (in this case, number of tests in the experiment); 

𝑟 = number of terms in the mathematical model. 

 

In this case study, 𝑚 = 19 tests and 𝑟 = 10 terms (including the constant). After calculating 

𝜎̂2 for each response surface model, Equation (4.7) was used to calculate the variance of the 

response surface models. 

 

𝑉𝑎𝑟[𝑓(𝐱)] = 𝜎2𝐚′(𝐱)(𝐗′𝐗)−1𝐚(𝐱) (4.7) 

 

The values of the variances of the objective functions were calculated using the 

Microsoft® Excel software. 

4.4.2. Construction of mechanistic models 

- Expected values of mechanistic models 

The results of material removal rate (𝑀𝑅𝑅) and the total cost of production per part 

(𝐾𝑃) were calculated from mechanistic models. 𝑀𝑅𝑅 values were calculated by Equation (4.8). 

 

𝑀𝑅𝑅 = 𝑉𝑐 . 𝑓. 𝑎𝑝 (4.8) 

 

It is worth mentioning that Equation (4.8) results in the expected value of 𝑀𝑅𝑅, and the 

variance of this answer is assumed to be insignificant as the decision variables are considered 

deterministic in this case study. 

The expected value for the production cost (𝐾𝑃) was calculated from Equation (4.9). 

 

𝐸[𝐾𝑝(𝐱)] = 𝑡𝑡
(𝑆ℎ + 𝑆𝑚)

60
+
𝑡𝑐
𝑇
(
𝐾𝑡ℎ
𝑁𝑡ℎ

+
𝐾𝑖
𝑁𝑖
) (4.9) 

 

Where: 

𝑡𝑡  = total cycle time (in minutes); 
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𝑆ℎ + 𝑆𝑚  = hourly labor and machine costs, measured in dollars per hour (U $ / h); 

𝐾𝑡ℎ = tool holder cost (U $); 

𝑁𝑡ℎ  = toolholder life (in number of edges); 

𝐾𝑖  = cost of the tool or insert (U $); 

𝑁𝑖 = number of cutting edges of the insert. 

 

Equation (4.10) shows the calculation of the total cycle time (𝑇𝑡): 

 

 

𝑡𝑡 = 𝑡𝑐 + 𝑡𝑠 + 𝑡𝑎 +
𝑡𝑝
𝑍
+
𝑁𝑡
𝑍
𝑡𝑖 (4.10) 

 

Where: 

𝑡𝑠 = secondary time; 

𝑡𝑎  = time of approach and removal of the tool; 

𝑡𝑝  = setup time; 

𝑍 = lot size (in units); 

𝑁𝑡  = number of tool changes; 

𝑡𝑖  = insert change time. 

 

Equation (4.11) was then used to calculate the value of 𝑁𝑡. The cut time (𝑡𝑐), in turn, was 

calculated by Equation (4.12): 

 

𝑁𝑡 = 𝑀á𝑥 [0, 𝐼 (𝑍
𝑡𝑐
𝑇
− 1)] (4.11) 

 

𝑡𝑐 =
𝑙𝑓𝜋𝑑

100𝑓𝑉𝑐
 (4.12) 

 

- Variance of mechanistic model of production cost 

As previously described in section 2.9.2, the cost of a turning process depends on a 

number of other variables, which can be called industrial variables. Some of these variables 

have a considerable random character, while others have a variability that can be neglected. 
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Table 4.6 presents the values of the industrial variables that were considered in a stochastic or 

deterministic way in this case study. 

Some assumptions were necessary to conduct this case study. At first, all industrial 

variables were included in the problem in a deterministic way (CAMPOS et al., 2017). 

Historical data about industrial variables were not collected in order to estimate their variances 

and adjust the probability distributions. Therefore, the choices of the probability distributions 

and the magnitude of the variances were attributed by the author in order to present a first 

analysis regarding the impact of the randomness of the stochastic variables present in the cost. 

 

Table 4.6 - Industrial variables (deterministic and stochastic) 

 N  Stochastic Variables Unit Symbol Mean Standard 

Deviation 

 1  Setup time Min 𝑡𝑝 60 6 

 2  Tool change time Min 𝑡𝑖 1 0.1 

 3  Batch size Pieces 𝑍 1000 100 

 4  Labor and machine costs US$ 𝑆ℎ + 𝑆𝑚 R$    50.00 R$      5.00 

 5  Tool holder cost US$ 𝐾𝑡ℎ R$  125.00 R$    12.50 

 6  Tool holder life Edges 𝑁𝑡ℎ 1000 100 

 7  Tool cost (or insert) US$ 𝐾𝑖 R$    31.25 R$      3.13 

   Deterministic Variables     

 8  Secondary time Min 𝑡𝑠 0.50 - 

 9  Approach and departure time Min 𝑡𝑎 0.10 - 

 10  Number of insert cutting edges Units 𝑁𝑖 4.00 - 

 11  Workpiece length Mm 𝑙𝑓 50.00 - 

 12  Workpiece diameter Mm 𝑑 49.00 - 

 

Different probability distributions could be used to represent the stochastic variables. 

Lot size (𝑍) is the only discrete variable among the seven random ones. A probability 

distribution often used to represent discrete variables is the Poisson distribution. However, it is 

possible to approximate a Poisson distribution to a normal distribution using 𝑧 = (𝑥 − 𝜆) √𝜆⁄  

(MONTGOMERY; RUNGER, 2018). For the other seven stochastic variables presented in 

Table 4.6, the normal probability distribution was used. The reason was that, in the real cases 

of application in the industry, it is common to represent the parameters as the weekly or daily 

averages of a longer period of time, a quarter or a semester. Thus, according to the Central Limit 

Theorem, samples composed of averages tend to follow a normal probability distribution 
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(MONTGOMERY; RUNGER, 2018). A variation coefficient was defined as 10% for each 

stochastic variable, as shown in Table 4.6. A priori, it was admitted that the correlations 

between these stochastic variables were not significant, as there was no evidence that such 

correlations exist in this study. Equation (4.13) was used to calculate the 𝐾𝑝 variance. 

 

𝑉𝑎𝑟[𝑓(𝐱)] =∑[
𝜕𝑓(𝐱)

𝜕𝑥i
]

2

𝜎𝑥1
2

𝑛

𝑖=1

+ 2∑ ∑ [
𝜕𝑓(𝐱)

𝜕𝑥i
] [
𝜕𝑓(𝐱)

𝜕𝑥j
] 𝜎𝑥𝑖𝑥𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (4.13) 

 

Therefore, the variance of 𝐾𝑝  - a particular case of Equation (4.14) - results in: 

 

𝑉𝑎𝑟[𝐾𝑝(𝛍)] = [
𝜕𝐾𝑝(𝛍)

𝜕𝑡p
]

2

𝜎𝑡𝑝
2 + [

𝜕𝐾𝑝(𝛍)

𝜕𝑡𝑖
]

2

𝜎𝑡𝑖
2 + [

𝜕𝐾𝑝(𝛍)

𝜕Z
]

2

𝜎𝑍
2

+ [
𝜕𝐾𝑝(𝛍)

𝜕(𝑆ℎ + 𝑆𝑚)
]

2

𝜎(𝑆ℎ+𝑆𝑚)
2 + [

𝜕𝐾𝑝(𝛍)

𝜕𝐾𝑡ℎ
]

2

𝜎𝐾𝑡ℎ
2 + [

𝜕𝐾𝑝(𝛍)

𝜕𝑁𝑡ℎ
]

2

𝜎𝑁𝑡ℎ
2

+ [
𝜕𝐾𝑝(𝛍)

𝜕𝐾𝑖
]

2

𝜎𝐾𝑖
2  

(4.14) 

 

Table 4.7 shows the equations used to calculate partial derivatives. The response surfaces 

for the expected cost value 𝐸[𝐾𝑝(𝐱)] and its SD standard deviation 𝑆𝐷[𝐾𝑝(𝐱)] = √𝑉𝑎𝑟[𝐾𝑝(𝐱)] 

are shown in Figures 4.12 to 4.17. Figures 4.12, 4.14 and 4.16 show that 𝐸[𝐾𝑝(𝐱)]  can vary 

between U $ 0.66 to U $ 1.00 depending on the levels of the decision variables. It is also 

observed that a low expected value of the cost can be obtained from the choice of high levels 

for the decision variables - also called, in this case study, cutting conditions or machine 

parameters. However, the SD values 𝑆𝐷[𝐾𝑝(𝐱)]  varied only between U $ 0.06 and U $ 0.08, 

as shown in Figures 4.13, 4.15 and 4.17 

After the mathematical modeling of the responses of interest, three different approaches 

were analyzed in this research. These approaches are presented in sections 4.5 to 4.7 below. 
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Table 4.7 - Partial 𝑲𝒑  derivatives in relation to industrial variables 

Variables Partial derivative 

𝑡𝑝 
𝜕𝐾𝑝(𝛍)

𝜕𝑡p
=
(𝑆ℎ + 𝑆𝑚)

60𝑍
 

𝑡𝑖 
𝜕𝐾𝑝(𝛍)

𝜕𝑡𝑖
=
𝑁𝑡
∗(𝑆ℎ + 𝑆𝑚)

60𝑍
 

𝑍 
𝜕𝐾𝑝(𝛍)

𝜕Z
=
−(𝑡𝑝 +𝑁𝑡

∗𝑡𝑖)(𝑆ℎ + 𝑆𝑚)

60𝑍2
 

𝑆ℎ + 𝑆𝑚 
𝜕𝐾𝑝(𝛍)

𝜕(𝑆ℎ + 𝑆𝑚)
=
𝑡𝑡
60

 

𝐾𝑡ℎ 
𝜕𝐾𝑝(𝛍)

𝜕𝐾𝑡ℎ
=

𝐶𝑡
𝑇.𝑁𝑡ℎ

 

𝑁𝑡ℎ 
𝜕𝐾𝑝(𝛍)

𝜕𝑁𝑡ℎ
= −

𝐶𝑡 .𝐾𝑡ℎ

𝑇.𝑁𝑡ℎ
2 

𝐾𝑖 
𝜕𝐾𝑝(𝛍)

𝜕𝐾𝑖
=

𝐶𝑡
𝑇.𝑁𝑖

 

 

  

 Figure 4.12 – 𝐸[𝐾𝑝(𝐱)] as a function of 𝑉𝑐  and 𝑓 Figure 4.13 – 𝑆𝐷[𝐾𝑝(𝐱)] versus 𝑉𝑐  and 𝑓 

 

  

Figure 4.14 – 𝐸[𝐾𝑝(𝐱)] as a function of 𝑉𝑐  and 𝑎𝑝 Figure 4.15 – 𝑆𝐷[𝐾𝑝(𝐱)] versus 𝑉𝑐  and 𝑎𝑝 
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Figure 4.16 – 𝑬[𝑲𝒑(𝐱)] as a function of 𝒇 and 𝒂𝒑 Figure 4.17 – 𝑺𝑫[𝑲𝒑(𝐱)] versus 𝒇 and 𝒂𝒑 

 

4.5. Approach 1: Multi-objective optimization problem subject to 

a stochastic process capacity constraint 

The first approach of this research consisted of optimizing three results of interest 

simultaneously (TORRES et al., 2019b): 

- Process productivity, represented by 𝑀𝑅𝑅; 

- The cost of production per piece, represented by 𝐾𝑝; 

- The quality, which was represented only by the average roughness 𝑅𝑎 in this first approach. 

 

More specifically, the aim was to answer the following question: how is it possible to 

simultaneously optimize the productivity and cost of the process, guaranteeing a minimum 

acceptable quality? Thus, 𝐾𝑝 and 𝑀𝑅𝑅 were modeled as the objective functions of the problem. 

The stochastic programming method integrated with the 𝐶𝑝𝑘  index (one of the proposals in this 

dissertation) to assess the process capability with regards to the critical-to-quality (CTQ) 

characteristic 𝑅𝑎 as a constraint. In fact, the average roughness (𝑅𝑎) is a CTQ widely used in 

the industry, and CTQs are often evaluated from the point of view of the process capacity. In 

this first approach, only the expected values of 𝐾𝑝 and 𝑀𝑅𝑅  were considered in the 

optimization problem. In addition, these two objective functions have been scaled as their 

original dimensions are considerably different. That is, while the cost varies between U $ 0.68 

and U $ 0.89, MRR is between 6 and 28.8 cm3/min. 

4.5.1. Scaling the objective functions 

For the scheduling, it was necessary to determine the utopian and Nadir values for the 

objective functions through the individual optimization of each function. Such values were 
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obtained after solving Equations (4.15) and (4.16), which correspond to the individual 

optimizations of 𝐸[𝐾𝑝(𝐱)] and 𝐸[𝑀𝑅𝑅(𝐱)], respectively. The results are shown in Table 4.8. 

 

𝑀𝑖𝑛
𝐱
𝐸[𝐾𝑝(𝐱)] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

√𝐱′𝐱 ≤ √2𝑛
4

= 1.682 

(4.15) 

 

𝑀𝑖𝑛
𝐱
𝐸[𝑀𝑅𝑅(𝐱)] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

√𝐱′𝐱 ≤ √2𝑛
4

= 1.682 

(4.16) 

 

Table 4.8 - Utopia and Nadir values for objective functions 

 Objective function Utopia value 𝑓𝑖
𝑈(𝐱) Nadir value 𝑓𝑖

𝑁(𝐱) 

𝐸[𝐾𝑝(𝐱)]  $ 0.700  $ 0.748 

𝐸[𝑀𝑅𝑅(𝐱)] 29.52 14.85 

 

In sequence, the objective functions were scaled using Equation (4.17): 

 

𝑓𝑖̅(𝐱) =
𝑓𝑖(𝐱) − 𝑓𝑖

𝑈(𝐱)

𝑓𝑖
𝑁(𝐱) − 𝑓𝑖

𝑈(𝐱)
 (4.17) 

 

Therefore, the objective functions resulting from Equation (4.17) and based on the values in 

Table 4.8 were: 

𝐸[𝐾𝑝̅̅̅̅ (𝐱)] =
𝐸[𝐾𝑝(𝐱)] − 0.700

0.748 − 0.700
 (4.18) 

 

𝐸[𝑀𝑅𝑅̅̅ ̅̅ ̅̅ ̅(𝐱)] =
𝐸[𝑀𝑅𝑅(𝐱)] − 29.52

14.85 − 29.52
 (4.19) 

 

Once scaled, both functions have a sense of minimization because the lower their scaled 

value, the closer to their utopian values they are. Then, the objective functions could be 

combined in the formulation of the optimization problem. 

4.5.2. Formulation of the optimization problem 
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The weighted sum method (WS) was used to formulate the global objective function 

𝐹(𝐱). Thus, Equation (4.20) describes the optimization problem defined by approach 1. 

 

𝑀í𝑛
𝐱
𝐹(𝐱) = 𝑤𝐸[𝐾𝑝̅̅̅̅ (𝐱)] + (1 − 𝑤)𝐸[𝑀𝑅𝑅̅̅ ̅̅ ̅̅ ̅(𝐱)] 

𝐶𝑝𝑘[𝑅𝑎(𝐱)] =
𝑈𝑆𝐿𝑅𝑎 − 𝐸[𝑅𝑎(𝐱)]

3√𝑉𝑎𝑟[𝑅𝑎(𝐱)]
≥ 1.67 

√𝐱′𝐱 ≤ √2𝑛
4

= 1.682 

(4.20) 

 

In this approach, the upper specification limit for 𝑅𝑎 (𝑈𝑆𝐿𝑅𝑎) was set at 0.25 µm, and a 

minimum value of 1.67 was defined for the 𝐶𝑝𝑘  of 𝑅𝑎 capacity index. The expected value 

𝐸[𝑅𝑎(𝐱)]  and the variance 𝑉𝑎𝑟[𝑅𝑎(𝐱)]  correspond to Equations (4.4) and (4.7) respectively. 

Approach 1 was compared to an optimization that considered only the expected values of 

the responses of interest, in particular, the average roughness (𝑅𝑎). This alternative corresponds 

to Equation (4.21). 

 

𝑀í𝑛
𝐱
𝐹(𝐱) = 𝑤𝐸[𝐾𝑝̅̅̅̅ (𝐱)] + (1 − 𝑤)𝐸[𝑀𝑅𝑅(𝐱)] 

𝐸[𝑅𝑎(𝐱)] ≤ 0.25 𝜇𝑚 

√𝐱′𝐱 ≤ √2𝑛
4

= 1.682 

(4.21) 

 

4.5.3. Solving the optimization problem 

The optimization problems defined in Equations (4.20) and (4.21) were programmed in 

Microsoft® Excel software and solved using the Solver supplement for the weight 𝑤 ranging 

from 0 to 1, in increments of 0.05. The Generalized Reduced Gradient (GRG) algorithm was 

chosen to obtain the optimal solutions. The Pareto frontiers of approach 1 and the deterministic 

optimization are illustrated in Figure 4.18. 

At first, the results of deterministic optimization may seem better than the results obtained 

with approach 1. In fact, Pareto-optimal solutions for conventional optimization reflect lower 

costs and higher material removal rates in terms of expected values. As an example, observe 

the results of both formulations for 𝑤 = 0.5 in Table 4.9. However, all solutions obtained in 

approach 1 have a 𝐶𝑝𝑘  index of at least 1.67. This means that there is more than 99.99% 

probability that the result of 𝑅𝑎 is less than or equal to 0.25 µm. The solutions provided by 

deterministic optimization, in turn, guaranteed an index 𝐶𝑝𝑘 = 0 for 𝑅𝑎. This was because the 
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deterministic constraint 𝐸[𝑅𝑎(𝐱)] ≤ 0,25 μm for all configurations of 𝑤. Thus, the probability 

of having parts that do not conform to the established specification is 50%. 

 

 

Figure 4.18 - Pareto frontiers for approach 1 and for conventional optimization 

 

Table 4.9 - Comparison between approach 1 and conventional optimization 

Result Approach 1 
Conventional 

optimization 

𝐸[𝐾𝑝(𝐱)] U$ 0.81 U$ 0.77 

𝐸[𝑀𝑅𝑅(𝐱)] 13.5 15.4 

𝐸[𝑅𝑎(𝐱)] 0.243 0.250 

𝐶𝑝𝑘[𝑅𝑎(𝐱)] 1.67  0 

 

The decision maker could also opt for a conventional optimization and define an average 

roughness level slightly below tolerance. However, it is possible that the arbitrary choice of 

value restricts the problem excessively, which would imply worse solutions from economic and 

productive points of view. 

The Pareto-optimal solution of approach 1 for 𝑤 = 0.5 was compared to the optimal 

solution obtained by Campos et al. (2017), The authors (CAMPOS et al., 2017) used 

multivariate statistical techniques to optimize seven responses of interest: 𝑇, 𝐶𝑡, 𝑇𝑡, 𝐾𝑝, 𝑅𝑎, 𝑅𝑡 

and 𝑀𝑅𝑅. As shown in Table 4.10. 
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14.5
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15.5

16.0

16.5
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E
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R

(x
)]

E[Kp(x)]

Approach 1 Conventional optimization
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Table 4.10 - Comparison between the results of approach 1 and Campos et al. (2017) 

Result Unit 
Campos et al. 

(2017) 
Approach 1 

𝑉𝑐  m/min 252.0 204 

𝑓 mm/ver 0.33 0.22 

𝑎𝑝 mm/ver 0.25 0.19 

𝑇 min 6.46 12.13 

𝑡𝑐  min 0.09 0.17 

𝑡𝑡  min 0.77 0.85 

𝐾𝑝 U$ 0.750 0.817 

𝑅𝑎 m 0.266 0.242 

𝑅𝑡  m 1.823 1.501 

𝑀𝑅𝑅 cm3/min 21.40 8.52 

 

The solutions obtained, that is, the cutting conditions or the values of the decision 

variables, were significantly different between the studies. The cutting speed (𝑉𝑐), the feed (𝑓) 

and the depth of cut (𝑎𝑝) were defined at higher levels in the work of Campos et al. (2017) 

compared to approach 1 of the present study. As a result, the material removal rate (𝑀𝑅𝑅) - 

which is the result of multiplying the three decision variables - was much lower in approach 1 

of the present study. For the same reason, the cut time (𝑡𝑐) and the total cycle time (𝑡𝑡) were 

also shorter in relation to the work by Campos et al. (2017). 

Although the tool life (𝑇) was significantly shorter in the study by Campos et al. (2017), 

this did not have a significant impact on the production cost (𝐾𝑝). In fact, it can be assumed that 

the 𝑇 life must be a function of maximization. However, it is important to highlight that by 

maximizing 𝑇 from the choice of machine parameters (in this case, the decision variables) is 

not always an advantageous strategy since this strategy can compromise the productivity and 

the cost of the process, as will be presented in approach 2. 

4.6. Approach 2: cost optimization considering stochastic 

industrial variables 

In addition to the optimization strategy presented in approach 1, the problem was 

approached in another way. This time, the stochastic variables presented in Table 4.6 were 

considered. The main objective of approach 2 was to assess the impact of the variability present 
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in the stochastic industrial variables on the cost of the process, both in terms of its expected 

value and its variance. 

4.6.1. Formulation of the optimization problem 

The optimization problem described in approach 2 consisted of maximizing the 

probability that the cost would be less than or equal to an established maximum value (𝐾𝑝
∗), 

subject to maximum results for the expected roughness values 𝑅𝑎 and 𝑅𝑡. The value of 𝐾𝑝
∗ was 

established to be $ 0.90. In this case study, it is assumed that this value is the maximum allowed 

by the company in order to guarantee an acceptable margin for its product. The upper 

specification limits for the medium (𝑈𝑆𝐿𝑅𝑎) and total (𝑈𝑆𝐿𝑅𝑡) roughness were defined as 0.8 

µm and 4 µm respectively. These limits correspond to the N6 classification of surface finish 

according to ISO 1302 (2002). Equation (4.22) presents the formulation of the multi-objective 

optimization problem related to approach 2. 

 

𝑀𝑎𝑥
𝐱
𝐹(𝐱) = ∫ ∅{𝐸[𝐾𝑝(𝐱)],√𝑉𝑎𝑟[𝐾𝑝(𝐱)]}

𝐾𝑝
∗

−∞

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝐸[𝑅𝑎(𝐱)] ≤ 𝑈𝑆𝐿𝑅𝑎  

𝐸[𝑅𝑡(𝐱)] ≤ 𝑈𝑆𝐿𝑅𝑡 

√𝐱′𝐱 ≤ √2𝑛
4

= 1.682 

(4.22) 

 

4.6.2. Validation of the process cost mathematical models 

The results of the mathematical models of the expected cost value of the process 

𝐸[𝐾𝑝(𝐱)],  as defined in Equation (4.9), and its standard deviation √𝑉𝑎𝑟[𝐾𝑝(𝐱)]  - such as 

Equation (4.14) , were validated using Monte Carlo Simulation. The purpose was to validate 

the demonstration of Equation (2.13) and, consequently, the stochastic programming method 

proposed in this dissertation. The mathematical models were evaluated at the center points of 

the cutting conditions - at levels 0 of the decision variables, as shown in Table 4.2. Equation 

(4.9) resulted in 𝐸[𝐾𝑝(𝐱)] = U$ 0.853 and Equation (4.14) resulted in √𝑉𝑎𝑟[𝐾𝑝(𝐱)] =U$ 0.070. 

A Monte Carlo Simulation with 10,000 replicates were generated and the results were 𝐸[𝐾𝑝(𝐱)] 
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= U$ 0.852 and √𝑉𝑎𝑟[𝐾𝑝(𝐱)] = U$ 0.070.Therefore, the mathematical models for 𝐾𝑝 have 

been validated. 

4.6.3. Solving the optimization problem 

The GRG algorithm was again used to solve the optimization problem of approach 2 in 

Equation (4.22). The problem was programmed using Microsoft® Excel software and its Solver 

supplement. The optimal values of the decision variables were: 

- 𝑉𝑐  =240.9 m/min; 

- 𝑓 = 0.42 mm/rev; 

- 𝑎𝑝 = 0.26 mm. 

Regarding the results of interest, a 95% confidence interval was obtained for the cost of 

U $ 0.73 ± 0.12. Therefore, the probability that the cost is less than or equal to U $ 0.90 is 

99.71%. Other results are shown in Table 4.11. It shows that the cut time 𝐶𝑡  and the total cycle 

time 𝑇𝑡 obtained are relatively low in relation to other options within the solution space. 

 

Table 4.11 - Results in optimal cutting conditions in approach 2 

𝐶𝑡 (min) 𝑇𝑡  (min) 𝑇 (min) 𝑅𝑎 (µm) 𝑅𝑡 (µm) MRR (cm3/min) 

0.08 0.75 5.93 0.28 2.12 26.8 

 

It is also possible to notice a low result for the tool life (𝑇) in a solution whose cost has 

been optimized. Section 4.6.5 explains the 𝑇 result in more detail. The values of 𝑅𝑎 and 𝑅𝑡 were 

significantly below their upper specification limits. In fact, these two constraints (defined 

deterministically in approach 2) were inactive in solving the problem. This means that, for the 

experimental region of this case study, there is a high probability that the roughness meets its 

specifications. The material removal rate (𝑀𝑅𝑅) obtained was significantly high, which 

corroborates with short cut and cycle times. 

4.6.4. Effects of industrial variables on the process cost 

The individual results of the partial derivatives in 𝑉𝑎𝑟[𝐾𝑝(𝐱)], whose calculations are 

presented in Table 4.7, did not represent their impact from a practical point of view. In fact, the 

derivatives represent only the impact of industrial variables per unit. For example, in the optimal 

conditions of the problem as presented in the previous section (4.6.3), if only the time for insert 

change (𝑡𝑖) changes from 1 min to 2 min, the cost would increase by $ 0.01. Under the same 
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conditions, if only labor and machine costs (𝑆ℎ + 𝑆𝑚) increased by $ 1.00, then 𝐾𝑝  would also 

increase by $ 0.01. Thus, one could assume that 𝑡𝑖 and 𝑆ℎ + 𝑆𝑚 have the same impact. However, 

a 1-minute increase in 𝑡𝑖 would actually mean a 100% increase over its expected value. An 

increase of U $ 1.00 in 𝑆ℎ + 𝑆𝑚 would represent an increase of only 2% compared to its average. 

Thus, to properly measure the impact of industrial variables, a complete factorial 

arrangement composed of 27 = 128 combinations between industrial variables was defined. 

Since these variables were considered normally distributed in this case study, the levels -1 and 

+1 were established as being −3𝜎  and −3𝜎, respectively, which corresponds to the limits of 

what is considered the natural variation of the process (99.73% of probability). Table 4.12 

shows the levels defined for the complete factorial arrangement and Figure 4.18 shows the 

standardized effects on the variables and their second order interactions. 

After calculating 𝐾𝑝 for all 128 combinations, it was possible to identify that labor and 

machine costs (𝑆ℎ + 𝑆𝑚), assessed here together, consist of the most significant industrial 

variable in the value of the process cost. The second variable with the main effect was the cost 

of the insert (𝐾𝑖), followed by the setup time (𝑡𝑝) and the insert changing time (𝑡𝑖). As shown 

in Table 4.12, an increase from U $ 50.00 to U $ 65.00 (corresponding to µ +  3𝜎) in 𝑆ℎ + 𝑆𝑚  

would imply an increase in U $ 0.19 in 𝐾𝑝,  if the other industrial variables remained in their 

expected values. This impact is 10 times greater than the impact of the second most significant 

variable (𝐾𝑖). The other industrial variables did not have a significant impact individually. The 

following second interactions were also significant: (i) 𝑡𝑝 and 𝑍; (ii) 𝑡𝑝 and 𝑆ℎ + 𝑆𝑚 ; (iii) 𝑍 and 

𝑆ℎ + 𝑆𝑚. 

 

Table 4.12 - Individual impacts of industrial variables on the cost of the process 

Variable Level -1 Level +1 Impact (+ 3σ) 

𝑡𝑝 30 90  U$ 0.02  

𝑡𝑝 0.7 1.3  U$ 0.00  

𝑍 700 1300  - U$ 0.01 

𝑆𝑚 + 𝑆ℎ 35.00 65.00  U$ 0.19  

𝐾𝑡ℎ  87.50   162.5   U$ 0.00  

𝑁𝑡ℎ 700 1300 - U$ 0.00 

𝐾𝑖  21.88   40.63   U$ 0.03  
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Figure 4.19 - Pareto chart for the standardized effects of stochastic industrial variables 

 

In addition, it is possible to estimate the potential impacts if the values of some industrial 

variables are modified in improvement projects. As an example of this case study, if the setup 

time were reduced from 60 min to 9 min, there would be a 6.5% reduction in 𝐾𝑝 (from U $ 0.73 

to U $ 0.68), considering expected values. This reduction in setup to a minute digit is the 

objective of the SMED - Single Minute Exchange of Die (SHINGO, 1983). Therefore, decision 

makers can use sensitivity analysis to analyze the feasibility of implementing SMED and other 

methods in their production system, instead of focusing their studies only on the machine 

parameters 𝑉𝑐 , 𝑓 and 𝑎𝑝. 

4.6.5. Minimum process cost versus maximum tool life 

In this section, the solutions to the following optimization problems were compared: 

a) The maximization of the probability that the cost is less than U $ 0.90, a problem defined 

in Equation (4.22); 

b) The maximization of the expected value of the tool life, subject to the experimental 

space constraint and deterministic constraints for the roughness results (𝑅𝑎) and (𝑅𝑡), 

as shown in Equation (4.23) as follows. 
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𝑀𝑎𝑥. 𝑓(𝐱) = 𝐸[𝑇(𝐱)] 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

𝐸[𝑅𝑎(𝐱)] ≤ 𝑈𝑆𝐿𝑅𝑎  

𝐸[𝑅𝑡(𝐱)] ≤ 𝑈𝑆𝐿𝑅𝑡 

√𝐱′𝐱 ≤ √2𝑛
4

= 1,682 

(4.23) 

 

Table 4.13 presents the solutions for Equations (4.22) and (4.23). 

 

Table 4.13 - Solutions to Equations (4.22) and (4.23) 

Problem Decision variables Results   

  
𝑉𝑐   

(m/min) 

𝑓 

(mm/rev) 

𝑎𝑝 

(mm) 

95% CI for 𝐾𝑝 

(U$) 

𝑇 

(min) 

𝑅𝑎 

(μm) 

𝑀𝑅𝑅  

(cm3/min) 

a) 240.9 0.42 0.26 0.73 ± 0.12 5.93 0.284 26.8 

b) 206.0 0.17 0.17 0.85 ± 0.15 17.18 0.232 5.7 

 

The solution of problem “b” presented in Table 4.13 provided an expected value for tool 

life 𝐸[𝑇(𝐱)] of 17.18 minutes. However, values of the decision variables obtained in this 

solution provided a cost of U $ 0.85 ± 0.15, for a 95% confidence level. With this interval, 

illustrated in Figure 4.20, the probability that the cost would be less than U $ 0.90 was only 

75.47%. More specifically, the maximization of tool life resulted in an increase of 16.9% in the 

expected value of 𝐾𝑝. 

It was observed that, in order to maximize the tool life, that is, solving the problem “b”, 

it was necessary to choose low levels for the decision variables (𝑉𝑐 , 𝑓, 𝑎𝑝), as shown in Table 

4.13. 

Tool life increased by 187.5% (from 5.93 min to 17.18 min) when it was maximized 

individually. However, the cut-off time (𝑡𝑐) increased from 0.08 min to 0.22 min, that is, a 

192.6% increase. Therefore, in this case study, increasing the tool life did not imply advantages 

for the process, as the cutting time increased more than the life. In other words, with 𝑇 

maximization, the tool would in fact last longer, but it would take even longer to machine each 

part. Consequently, the number of parts machined per tool edge (𝑇 𝑡𝑐⁄ ) would be 78, solving 

problem “a” and 77 for problem “b”. The number of tool changes (𝑁𝑡) would be the same (12) 

for a batch of 1000 pieces. 
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Figure 4.20 - Confidence intervals for 𝑲𝒑 for the two solutions obtained 

 

In addition, it was found that, after maximizing tool life, the total cycle time (𝑡𝑡) increased 

from 0.748 min to 0.894 min. This increase of 19.5% is the main cause of the increase in the 

expected value of the cost from U $ 0.73 to U $ 0.85, as shown in Table 4.13. 

Therefore, the maximization of the tool life obtained from the choice of cutting conditions 

(or decision variables) does not necessarily reduce the cost of the process. In fact, such a 

strategy can even increase the cost, as noted in the present case study. 

4.7. Approach 3: multivariate stochastic constraint (MCCP) 

The multivariate chance-constrained programming (MCCP) was applied in the case study 

as the third and last approach of this work. The multi-objective optimization problem 

formulated in the present approach consisted in maximizing the probability that the cost (𝐾𝑝)  

would be less than or equal to its upper limit specified as U $ 0.90, this time subject to a 

multivariate probabilistic constraint of both 𝑅𝑎 and 𝑅𝑡 roughness values. No studies were found 

on multi-objective optimization that have used this type of constraint until the moment of the 

present research. The multivariate probabilistic constraint was represented by the estimated 

𝑃𝑃𝑀 (parts per million) indicator. Equation (4.24) describes the optimization problem defined 

for approach 3. 
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𝑀𝑎𝑥
𝐱
𝐹(𝐱) = ∫ ∅{𝐸[𝐾𝑝(𝐱)],√𝑉𝑎𝑟[𝐾𝑝(𝐱)]}

𝐾𝑝
∗

−∞

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

106 {1 − ∫ ∅[𝐸(𝐑),√𝑉𝑎𝑟(𝐑)]

𝐔𝐒𝐋

−∞

} ≤ 3.4 

√𝐱′𝐱 ≤ √2𝑛
4

= 1.682 

(4.24) 

 

Where: 

𝐔𝐒𝐋 = vector composed of the upper specification limits of 𝑅𝑎 and 𝑅𝑡 (0,8 µm and 4 µm 

respectively); 

𝐸(𝐑) = vector composed by the functions of the expected values of 𝑅𝑎 and 𝑅𝑡; 

√𝑉𝑎𝑟(𝐑) = vector composed by the functions of the standard deviations of 𝑅𝑎 and 𝑅𝑡. 

 

As in approach 2, the solution of Equation (4.24) is unique, as there is no weight 

configuration to be predefined. Table 4.14 presents the results of approach 3. 

 

Table 4.14 - Solutions and results of approach 3 

Decision variable Unit Value 

𝑉𝑐  m/min 202.3 

𝑓 mm/rev 0.3 

𝑎𝑝 Mm 0.12 

Result Unit Value 

𝐾𝑝 U$ 0.753+-0.132 

𝑃(𝐾𝑝 <= 0.90) - 98.54% 

𝑃𝑃𝑀(𝐑) Parts 3.4 

𝑅𝑎 µm 0.297+-0.006 

𝑅𝑡 µm 1.775+-0.098 

𝐶𝑝𝑘(𝑅𝑎) - > 2 

𝐶𝑝𝑘(𝑅𝑡) - 1.5 

𝑀𝑅𝑅 cm3/min 7.22 

𝑇 Min 11.19 

 

Using the GRG algorithm, a cost of U $ 0.753 ± 0.132 was obtained, with 95% 

confidence. With this confidence interval, the probability that the cost would be less than U $ 
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0.90 would be 98.54%. In addition, only 3.4 𝑃𝑃𝑀 would fail, taking into account the 

characteristics 𝑅𝑎 and 𝑅𝑡 simultaneously. These results were obtained for a cutting speed (𝑉𝑐) 

of 202.3 m / min, a feed rate (𝑓) of 0.3 mm/rev, and a depth of cut (𝑎𝑝) of 0.12 mm. To satisfy 

the constraints of the problem, and at the same time maximize the probabilistic function of the 

cost, the decision variables were defined at lower levels. As a result, the material removal rate 

(𝑀𝑅𝑅) has been significantly reduced (7.22 cm3/min) and the tool life has increased (11.21 

min) compared to other approaches. Finally, it was observed that the confidence intervals of 𝑅𝑎 

and 𝑅𝑡 are below their upper specification limits (0.8 µm and 4 µm respectively). These results 

implied a 𝐶𝑝𝑘  greater than 2 for 𝑅𝑎 and a 𝐶𝑝𝑘   equal to 1.50 for 𝑅𝑡. 

Of the three approaches presented in this study, approach 3 provides the final and 

recommended solution for this case study since this approach was the most complete one. In 

fact, approaches 1 and 2 were only the initial tested strategies, and the goal was to analyze 

issues such as the representation of process capacity as stochastic constraint, the influence of 

stochastic industrial variables on the mean and variance of the cost and the consequence of 

maximizing the tool life by changing only the cutting parameters. 
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5. CONCLUSIONS 

This work aimed to propose, apply, and analyze the combined use of stochastic 

programming techniques, process capacity indices and multivariate statistical methods. To this 

end, a literature review was carried out on the main statistical techniques used in the 

optimization of manufacturing processes. Based on such techniques, the multivariate stochastic 

constraint, or multivariate chance-constrained programming (MCCP) method was proposed. 

This method was applied to a case study of multi-objective optimization of the turning process 

of hardened steel AISI 52100. The main results and contributions of this research are presented 

below. 

5.1. Research contributions 

The main contributions of this dissertation can be synthesized as follows: 

a) An alternative to include the variance of response surface models - specifically, second 

order polynomial models - was proposed in the calculation of the 𝐶𝑝𝑘  process capacity 

index and the Parts Per Million (𝑃𝑃𝑀) index. This index, although widely used in the 

industry, does not appear as often in modeling optimization problems. In fact, at the 

time of this research, no studies were found that included stochastic programming 

methods in the calculation of the 𝐶𝑝𝑘  index in a real case study of a mechanical 

manufacturing process. This approach was proposed in Torres et al. (2019b). This study 

showed that the strategy of modelling only the expected values of the critical quality 

characteristics does not guarantee a satisfactory capacity index for the process. In 

contrast, 21 Pareto-optimal solutions were obtained via the proposed method, each with 

a 𝐶𝑝𝑘 ≥1.67 index for the hardened steel turning process analyzed. 

b) The calculation of the variance of a continuous and derivable function (linear or non-

linear) was demonstrated, applied and validated using Monte Carlo simulation. The 

resulting equation could be applied to calculate the variance of both empirical and 

mechanistic models. 

c) An analysis of the impact of some of the main industrial variables that have a random 

nature and that are included in the turning process cost was carried out. Until then, at 

the best of the author’s knowledge, the works that considered such variables were not 

related to experimental design techniques and multi-objective optimization of 

manufacturing processes. 
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d) The multivariate and the stochastic characteristics of the modeled responses of interest 

was considered as constraints in the formulation of the optimization problem. The result 

was the use of a quality index widely used in the industry (the 𝑃𝑃𝑀) as a multivariate 

stochastic constraint. 

It is important to highlight that many studies published in the area of multi-objective 

optimization of manufacturing processes are limited to analyzing the main effects and second-

order interactions that the decision variables have on the expected values of the responses of 

interest. The present research, however, also included the influence of some important 

stochastic industrial variables on the cost of the process. 

A practical and specific contribution to the analyzed case study was the realization that 

maximizing the life of the tool does not always mean cost savings. In this object of study, the 

maximum tool life actually resulted in an increase in the cost of the process since the cutting 

parameters were set at such a low level that there was an increase in labor costs and machine 

without even reducing tooling costs. 

5.2. Research limitations 

Some limitations of this study are worth mentioning. Firstly, the conclusions made in 

relation to the case study are limited to its characteristics. It would be necessary to apply the 

proposed method to other study objects to test the applicability and effectiveness of the method 

more widely. 

Another limitation of this research was that the selected case study did not provide 

information for the analysis of the interactions between noise variables, for they were 

considered independent. Such information is relevant for works that take into account the 

variability of the results of interest. 

Replications of the experiments within the same arrangement and confirmation 

experiments after obtaining the final solution (approach 3) would be of great value for the 

present study, especially with regard to the estimation of the mean square error of each response 

surface model. However, carrying out replications were unfeasible from an economic point of 

view. 

It is also important to highlight that there are other variables related to the process flow 

that could also be included in the present study, such as the throughput of the previous process 

and the next process. However, this research on the hard turning process only. To analyze the 

total cost to produce a part in a complete way, the other operations must also be analyzed, so 

the method proposed needs to be extended to the entire flow. 
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5.3. Recommendations for future work 

For future research, the application of the proposed method in other manufacturing 

processes is suggested so that the proposal is validated for processes of different natures. The 

authors have already published an article applying the MCCP method in a coating flux-cored 

arc welding process for a stainless steel cladding application (Torres et al., 2020). This time, 

the study aimed to estimate the natural variability of the process in relation to geometrical 

characteristics of the welding bead. 

In addition, other regression methods can be used in addition to the ordinary least squares 

(OLS) method. Among them, we have the method of weighted least squares, or weighted least 

squares (WLS). Another alternative is the Poisson regression. These and other methods can be 

compared for the same object of study, or for the same set of manufacturing processes. 

Finally, aspects related to productivity could and should be included in optimization 

problems related to the industry. It is possible to consider a stochastic overall equipment 

effectiveness, for instance. As a final idea, the author suggests the calculation and consideration 

of the takt time of a process to establish the total cycle time and other process parameters. 

Considering a stochastic demand and a random time available for work, there will also be a 

random takt time, maybe called takt interval. In this problem, a potential result of interest would 

be the maximum probability of meeting the demand just-in-time, that is, in the correct time and 

in the correct quantity of products without committing the waste of overproduction (OHNO, 

1997).  
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APPENDIX A – Definitions of expected value and variance 

of linear combinations 

The following definitions were made based on statistical references (BIRGE; 

LOUVEAUX, 2011; MONTGOMERY; RUNGER, 2018). Suppose 𝑥 is a random variable and 

has an expected value 𝐸(𝑥) and a variance 𝑉𝑎𝑟(𝑥), respectively, as: 

 

𝐸(𝑥) = 𝜇𝑥    (A.1) 

𝑉𝑎𝑟(𝑥) = 𝐸(𝑥 − 𝜇𝑥)
2 = 𝜎𝑥

2 (A.2) 

 

If 𝑥 is multiplied by a constant value 𝑐, then: 

 

𝐸(𝑐𝑥) = 𝑐𝐸(𝑥) = 𝑐𝜇𝑥    (A.3) 

 

𝑉𝑎𝑟(𝑐𝑥) = 𝐸(𝑐𝑥 − 𝑐𝜇𝑥)
2 = 𝐸[𝑐2(𝑥 − 𝜇𝑥)

2] = 𝑐2𝐸(𝑥 − 𝜇𝑥)
2 = 𝑐2𝜎𝑥

2 (A.4) 

 

If 𝑥1 and 𝑥2 are two random variables, then: 

 

𝐸(𝑥1 + 𝑥2) = 𝐸(𝑥1) + 𝐸(𝑥2) = 𝜇𝑥1 + 𝜇𝑥2   (A.5) 

 

𝐸(𝑥1 − 𝑥2) = 𝐸(𝑥1) − 𝐸(𝑥2) = 𝜇𝑥1 − 𝜇𝑥2   (A.6) 

 

The covariance between 𝑥1 and 𝑥2 is defined as follows: 

 

𝐶𝑜𝑣𝑎𝑟(𝑥1, 𝑥2) = 𝐸[(𝑥1 − 𝜇𝑥1)(𝑥2 − 𝜇𝑥2)] = 𝜎𝑥1𝑥2 (A.7) 

 

The correlation between 𝑥1 and 𝑥2, in turn, is given by: 

 

𝜌𝑥1𝑥2 =
𝜎𝑥1𝑥2
𝜎𝑥1
2 𝜎𝑥2

2
 𝑜𝑢 𝑟𝑥1𝑥2 =

𝑠𝑥1𝑥2
𝑠𝑥1
2 𝑠𝑥2

2
  (A.8) 

 

In Equation (A.8), 𝜌𝑥1𝑥2 is the population correlation. In its calculation, the covariance 

and population variances of 𝑥1 and 𝑥2are used. The result 𝑟𝑥1𝑥2 refers to the sample correlation, 
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calculated from the sample covariance and variances. The significance of the correlations can 

be obtained through Pearson's hypothesis test. For more details, see Montgomery and Runger 

(2018). 

Following with the definitions, if 𝑐1 and 𝑐2 are constant, then we have: 

 

𝐶𝑜𝑣𝑎𝑟(𝑐1𝑥1, 𝑐2𝑥2) = 𝐸[(𝑐1𝑥1 − 𝑐1𝜇𝑥1)(𝑐2𝑥2 − 𝑐2𝜇𝑥2)] 

= 𝑐1𝑐2𝐸[(𝑥1 − 𝜇𝑥1)(𝑥2 − 𝜇𝑥2)] = 𝑐1𝑐2𝐶𝑜𝑣𝑎𝑟(𝑥1, 𝑥2) = 𝑐1𝑐2𝜎𝑥1𝑥2 
(A.8) 

 

Now suppose that 𝑓(𝐱) is a linear combination of 𝑥1 and 𝑥2 such that 𝑓(𝐱) = 𝑐1𝑥1 +

𝑐2𝑥2. So, the expected value of 𝑓(𝐱)  is: 

 

𝐸[𝑓(𝐱)] = 𝐸(𝑐1𝑥1 + 𝑐2𝑥2) = 𝑐1𝐸(𝑥1) + 𝑐2𝐸(𝑥2) = 𝑐1𝜇𝑥1 + 𝑐2𝜇𝑥2 (A.9) 

 

The calculation of the variance of 𝑓(𝐱) is demonstrated as follows: 

 

𝑉𝑎𝑟[𝑓(𝐱)] = [𝑐1𝑥1 + 𝑐2𝑥2] = 𝐸[(𝑐1𝑥1 + 𝑐2𝑥2) − (𝑐1𝜇𝑥1 + 𝑐2𝜇𝑥2)]
2
 

= 𝐸[(𝑐1𝑥1 − 𝑐1𝜇𝑥1) + (𝑐2𝑥2 − 𝑐2𝜇𝑥2)]
2
 

= 𝐸 [𝑐1
2(𝑥1 − 𝜇𝑥1)

2
+ 𝑏2(𝑥2 − 𝜇𝑥2)

2
+ 2𝑐1𝑐2(𝑐1𝑥1 − 𝑐1𝜇𝑥1)(𝑐2𝑥2 − 𝑐2𝜇𝑥2)] 

= 𝑐1
2𝐸 [(𝑥1 − 𝜇𝑥1)

2
] + 𝑐2

2𝐸 [(𝑥2 − 𝜇𝑥2)
2
] + 2𝑐1𝑐2𝐸[(𝑐1𝑥1 − 𝑐1𝜇𝑥1)(𝑐2𝑥2 − 𝑐2𝜇𝑥2)] 

= 𝑐1
2𝑉𝑎𝑟(𝑥1) + 𝑏

2𝑉𝑎𝑟(𝑥2) + 2𝑐1𝑏𝐶𝑜𝑣𝑎𝑟(𝑥1, 𝑥2) 

= 𝑐1
2𝜎𝑥1

2 + 𝑐2
2𝜎𝑥2

2 + 2𝑐1𝑐2𝜎𝑥1𝑥2 

(A.10) 

 

Equation (A.10) is related to some of the concepts of Markowitz Theorem 

(MARKOWITZ, 1952) for the particular case of a portfolio of two stocks, for instance, where  

𝑥1 is the value of stock 1, 𝑥2 is the value of stock 2, 𝑐1 and 𝑐2 are the number of shares of 1 and 

2 respectively. Equation (A.10) can also be written in a matrix form as follows: 

 

𝑉𝑎𝑟[𝑓(𝐱)] = [𝑐1 𝑐2] [
𝜎𝑥1
2 𝜎𝑥1𝑥2

𝜎𝑥1𝑥2 𝜎𝑥2
2 ] [

𝑐1
𝑐2
] = 𝐜′𝚺𝐱𝐜 (A.11) 

 

In cases where 𝑥1 and 𝑥2 are deterministic variables and 𝑐1 and 𝑐2 are random 

coefficients, the variance of 𝑓(𝐱) is given by: 



74 

 

𝑉𝑎𝑟[𝑓(𝐱)] = [𝑥1 𝑥2] [
𝜎𝑐1
2 𝜎𝑐1𝑐2

𝜎𝑐1𝑐2 𝜎𝑐2
2 ] [

𝑥1
𝑥2
] = 𝐱′𝚺𝐜𝐱 (A.12) 
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APPENDIX B – Main vectors and matrices related to the 

case study 

Next, the vectors and matrices used for calculating the expected values and variances of 

the response surface models are included in the multi-objective optimization problems of this 

work. 

 

𝐚(𝐱) =

[
 
 
 
 
 
 
 
 
 
 
1
𝑥1
𝑥2
𝑥3
𝑥1
2

𝑥2
2

𝑥3
2

𝑥1𝑥2
𝑥1𝑥3
𝑥2𝑥3]

 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
 
1
𝑉𝑐
𝑓
𝑎𝑝

𝑉𝑐
2

𝑓2

𝑎𝑝
2

𝑉𝑐𝑓
𝑉𝑐𝑎𝑝
𝑓𝑎𝑝 ]

 
 
 
 
 
 
 
 
 
 

, 𝛃 =

[
 
 
 
 
 
 
 
 
 
 
𝛽0
𝛽1
𝛽2
𝛽3
𝛽11
𝛽22
𝛽33
𝛽12
𝛽13
𝛽23]

 
 
 
 
 
 
 
 
 
 

 

 

(B.1) 

 

The Central Composite Design (CCD) arrangement used in this case study resulted in 

matrix X and vector y as follows: 

 

𝐗 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 −1 −1 −1 1 1 1 −1 −1 1
1 1 −1 −1 1 1 1 −1 −1 1
1 −1 1 −1 1 1 1 −1 1 −1
1 1 1 −1 1 1 1 1 −1 −1
1 −1 −1 1 1 1 1 1 −1 −1
1 1 −1 1 1 1 1 −1 1 −1
1 −1 1 1 1 1 1 −1 −1 1
1 1 1 1 1 1 1 1 1 1
1 −1,68 0 0 2,83 0 0 0 0 0
1 1,68 0 0 2,83 0 0 0 0 0
1 0 −1,68 0 0 2,83 0 0 0 0
1 0 1,68 0 0 2,83 0 0 0 0
1 0 0 −1,68 0 0 −2,83 0 0 0
1 0 0 1,68 0 0 2,83 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 ]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

, 𝐲 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
𝑦1
𝑦2
𝑦3
𝑦4
𝑦5
𝑦6
𝑦7
𝑦8
𝑦9
𝑦10
𝑦11
𝑦12
𝑦13
𝑦4
𝑦15
𝑦16
𝑦17
𝑦18
𝑦19]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 (B.2) 
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APPENDIX C – Excel spreadsheets used in formulations 

and calculations of multi-objective optimization problems 

 

 

 

 

 

 

 

 

  

Solução Vc f ap

Valor cod. 0,000 0,000 0,000

Valor decod. 220,0 0,30 0,23

Variáveis de decisão

T Ra Rt Kp MRR

E[f(x)] 4,963 0,260 1,733 0,853$               14,850

Var[f(x)] 0,007 2,62E-06 0,001 0,0049 -

SD[f(x)] 0,084 0,002 0,029 0,070$               -

USL 0,400 2,000 0,90$                  

Cpk 28,834 3,097

E[F(x)] esc. 5,485 0,660732777

F(x) WS 3,073009

w 0,5

P(Kp<USL)

75,06%

MCCP Corr RaRt

1,00E+00 0,720

0,725$           0,748$     

7,32 29,52

PPM (Ra e Rt)

0,00000

<=

3,4



77 

APPENDIX D – Complete articles published in journals 

 

1. TORRES, A. F.; MIRANDA, R. P. R.; PAIVA, A. P.; CAMPOS, P. H. S.; BALESTRASSI, 

P. P.; FERREIRA, J. R. Stochastic optimization of AISI 52100 hard turning with six sigma 

capability constraint. IEEE Access, v. 7, p. 46288-46294, 2019. 
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2. TORRES, A. F.; ALMEIDA, F. A.; PAIVA, A. P.; FERREIRA, J. R.; BALESTRASSI, P. 

P.; CAMPOS, P. H. S. Impact of stochastic industrial variables on the cost optimization of 

AISI 52100 hardened-steel turning process. The International Journal of Advanced 

Manufacturing Technology, v. 104, p. 4331-4340, 2019. 
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3. TORRES, A. F.; ROCHA, F. B.; ALMEIDA, F. A.; GOMES, J. H. F.; PAIVA, A. P.; 

BALESTRASSI, P. P. multivariate stochastic optimization approach applied in a flux-cored 

arc welding process. IEEE Access, v. 8, p. 61267-61276, 2020. 
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4. COSTA, A. F. B.; TORRES, A. F.; BALESTRASSI, P. P. The monitoring of mean vectors 

with VCS charts for multivariate processes. Journal of Statistical Computation and 

Simulation, v. 90, n. 10, p. 1897-1920, 2020. 
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5. ANTONY, J.; VILES, E.; TORRES, A. F.; PAULA, T. I.; FERNANDES, M. M.; 

CUDNEY, E. A. Design of experiments in the service industry: a critical literature review 

and future research directions. The TQM Journal, v. ahead-of-print, n. ahead-of-print, 

2020. 
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6. ANTONY, J.; VILES, E.; TORRES, A. F.; FERNANDES, M. M.; CUDNEY, E. A. Design 

of experiments in the service industry: results from a global survey and directions for future 

research. The TQM Journal, v. ahead-of-print, n. ahead-of-print, 2020. 
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7. LEAL, F.; MARTINS, P. C.; TORRES, A. F.; MONTEVECHI, J. A. B. Learning lean with 

lego: developing and evaluating the efficacy of a serious game. Production, v. 27, n. spe, 

2017. 
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