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Abstract

Sanghikian, Nathalie; Martinelli Pinto, Rafael (Advisor). Matheuris-
tics for Multi-Product Maritime Inventory Routing Prob-
lems. Rio de Janeiro, 2020. 59p. Dissertação de Mestrado – Departa-
mento de Engenharia Industrial, Pontifícia Universidade Católica do
Rio de Janeiro.

In the current scenario of the world economy, it is essential to in-
crease the integration between the different players in the companies’ sup-
ply chain, reducing operational costs, and improving efficiency. Ship routing
is a substantial part of this integration regarding global maritime com-
merce, being the object of study by many authors. In this work, we present
different methodologies to solve variants of the Maritime Inventory Rout-
ing Problem. This problem involves a large number of variables and is a
computationally complex problem to solve. Our primary motivation is to
solve a ship routing real case of a large company in the Oil & Gas sec-
tor, achieving high-quality solutions in plausible processing times and im-
proving companies current results. All developed methodologies are based
on a metaheuristic combination with a linear mathematical model. One of
the main differences between the methodologies lies in the mathematical
model to solve the inventory problem, where we tested discrete-time and
continuous-time approaches. Other differences concern the number of eval-
uated products (single or multi-product) and the metaheuristic used (local
search heuristics with a Simulated Annealing probability factor or Hybrid
Variable Neighborhood Search). For the methodology using the discrete-
time model, the results are satisfactory, with low and punctual inventory
violations in an acceptable computational time. For the methodology using
the continuous-time model, the results are better once, in reduced computa-
tional time, inventory violations remain low or non-existent, depending on
the scenario evaluated and the metaheuristic used. The results obtained in
this work are remarkable and allow its practical application for real cases.

Keywords
Maritime Inventory Routing; Matheuristics; Linear Programming;
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Resumo

Sanghikian, Nathalie; Martinelli Pinto, Rafael. Matheurísticas para
Problemas de Roteamento Marítimo com Estoques e Múlti-
plos Produtos. Rio de Janeiro, 2020. 59p. Dissertação de Mestrado –
Departamento de Engenharia Industrial, Pontifícia Universidade Ca-
tólica do Rio de Janeiro.

No cenário atual da economia mundial, é essencial aumentar a integra-
ção entre os diferentes atores da cadeia de suprimentos das empresas, redu-
zindo custos operacionais e melhorando a eficiência. O roteamento de navios
é parte imprescindível dessa integração no comércio marítimo global, sendo
objeto de estudo de muitos autores. Neste trabalho, apresentamos diferentes
metodologias para resolver variantes do Problema de Roteamento Marítimo
com Estoques. Esse problema envolve um grande número de variáveis e é
computacionalmente complexo de ser resolvido. Nossa principal motivação
é resolver um caso real de roteamento de navios de uma grande empresa do
setor de Óleo & Gás, obtendo soluções de alta qualidade em tempos com-
putacionais plausíveis e melhorando os resultados atuais da empresa. Todas
as metodologias desenvolvidas são baseadas em uma combinação de uma
meta-heurística com um modelo matemático de programação linear.Uma
das principais diferenças entre as metodologias está no modelo matemático
para resolver o problema de estoque, onde testamos abordagens de tempo
discreto e tempo contínuo. As outras diferenças dizem respeito ao número de
produtos avaliados (único ou múltiplos produtos) e à meta-heurística usada
(heurística de busca local com um fator de probabilidade de Simulated An-
nealing ou Hybrid Variable Neighborhood Search). Para a metodologia que
utiliza um modelo de tempo discreto, os resultados são satisfatórios, com vi-
olações baixas e pontuais do estoque em um tempo computacional aceitável.
Para a metodologia que utiliza um modelo de tempo contínuo, os resulta-
dos são ainda melhores, uma vez que, em reduzido tempo computacional,
as violações de estoque permanecem baixas ou inexistentes, dependendo do
cenário avaliado e da meta-heurística utilizada. Os resultados obtidos neste
trabalho são notáveis e permitem sua aplicação prática em casos reais.

Palavras-chave
Roteamento Marítimo com Estoques; Matheurística; Programação Li-

near;
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1
Introduction

Reflecting the evolution of the world economy and commercial activity,
international maritime trade lost strength in 2018: volumes grew 2.7% in
2018, down from 4.1% in 2017. The slowdown was wide-ranging and affected
almost all sea cargo segments (UNCTAD 2019). In face of this situation,
added to the intensification of market competition, it is essential to increase
the integration between the different actors in the companies’ supply chain,
reducing operational costs and improving efficiency. In this scenario, the
importance of an adequate routing of these ships is highlighted to guarantee
the efficient use of the maritime fleet, meeting deadlines and competitive costs
(Christiansen and Fagerholt 2009).

Even with the international maritime trade slowing down, between 2017
and 2018, oil and its derivatives represented 29.4% of the cargo loaded and
31.1% of the cargo unloaded in the world (UNCTAD 2019). In Brazil, according
to the yearbook of the National Waterway Transport Agency (ANTAQ), in
2019 almost 65 thousand moorings were carried out and 1.104 billion tons
were handled. Of this total, 224.7 million tons refer to the Oil and Derivatives
sector, an increase of 11% over the previous year. Crude oil exports grew 37%
in the 2018-2019 period and represent 61.2% of liquid bulk (ANTAQ 2019).

A large company in the gas oil sector is responsible for the production,
refining and transportation of oil and oil products, such as LPG, naphtha,
gasoline, kerosene, diesel, fuel oils. Thus, it is up to the company to contract
ships and to design their routes, in order to meet the assumptions inherent to
the process, such as, for example, guarantee of meeting demand, deadlines, in-
ventory maintenance, aiming at the lowest possible cost. In this configuration,
where the ship operator is also the inventory manager at the terminals, arises
a problem known as Maritime Inventory Routing Problem (MIRP).

The MIRP is a combination of routing and scheduling problems of ships
and inventory management (Christiansen and Fagerholt 2009). The routing
must define which ports and in what sequence the ships will visit, respecting
draft limitations and the capabilities of the ships. The time of each trip can
vary from days to months. Ships do not have a mandatory port of origin. They
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Chapter 1. Introduction 12

can start or end their journey anywhere. The product is produced and stored
in cargo ports and is transported by sea to unloading ports. The goal is to find
routes that minimize routing and inventory costs respecting the restrictions
of the problem, such as upper and lower limits of inventory in ports, the
capacities of ships, drafts and time horizon (Christiansen and Fagerholt 2009,
Costa 2018). Furthermore, especially in this work, it is important to consider
the multi-product variant, since the company refines and transports oil and oil
products. Ports can be producers or consumers of one or more oil products and
it is necessary to define which product will be loaded, transported and unloaded
in ship’s routing to meet a specifically demand. The MIRP is a variant of the
Inventory Routing Problem (IRP). The main differences between the MIRP
and the basic variant of the IRP are that in the IRP the vehicles usually start
and end their route in a central depot and make their journey in a single day.
In both problems the quantity loaded in each vehicle must respect the available
capacity, and there may also be vehicles with different capacities.

The real case addressed in this work refers to a large Oil & Gas company,
which, until recently, had its scheduling of ships’ routes done empirically, based
on the experience of the programmers. Seeking to improve the programming
process, a ship routing system was developed by the company’s information
technology center in partnership with the logistics area. The system divides
the model into two stages: inventory and routing. The first stage does not
consider some relevant information, as ships initial inventory. The second one
forces the programmer to fix the ships routes until they are empty. These
issues cause, consequently, loss of relevant information, unfeasible scenarios
and the need for the programmer to act on the results, making the system
difficult to use and affecting the quality of the solutions. Despite these issues,
this system is the current one used in the company. An alternative one-step
model was developed by Costa (2018), considering all relevant variables to
the system and eliminating the programmer’s interference. However, using
the branch and bound approach to solve an integer programming problem,
it was found that the model resolution was not practical due to the high
running times. Alternatively, the model has been extended to use relax-and-
fix and fix-and-optimize heuristics to obtain good solutions in a shorter time.
Despite presenting a better answer than the model, the search procedure was
exhaustive and inefficient, taking a few hours to complete. Even this better
solution is not applicable in the company, which requires faster and higher
quality results (Costa 2018).

Metaheuristics is one of the main techniques for getting feasible solutions
in which mathematical programming models are not able to find an optimal

DBD
PUC-Rio - Certificação Digital Nº 1821626/CA



Chapter 1. Introduction 13

solution. This approach does not guarantee optimal solutions, but possibly a
feasible, high-quality solution. It is a method that provides a general frame-
work and strategy guidelines for developing a specific heuristic method that
is adjustable to a given problem. In the last decade, matheuristics or hybrid-
metaheuristics are a growing field in operations research. They are optimization
algorithms that result from the combination of metaheuristics and mathemati-
cal programming techniques (Papageorgiou et al. 2018). Hybrid-metaheuristics
have been applied to several different routing problems (Archetti and Speranza
2014) and Papageorgiou et al. (2018) present an extensive computational study
of hybrid-metaheuristics to find high-quality solutions for MIRP.

Thus, in this work, the objective is to develop a solution method for
Multi-Product Maritime Inventory Routing Problem, which consists of a
hybrid meta-heuristic, where a neighborhood-based heuristic is used for ship
routing, assisted by a linear programming mathematical model which decides
the inventory levels at ports, with the focus on minimum cost and acceptable
computational time.

We developed different methodologies seeking high-quality solutions in a
reduced computational time. This Master thesis is organized as follows: Chap-
ter 2 presents a literature review of ship routing with inventory management
and its solution methods. Then, Chapter 3 details the real case and a first com-
parison between the developed methodologies. Chapter 4 presents the solution
approach using a discrete-time mathematical formulation. Next, Chapter 5
shows the solution approach using a continuous-time mathematical formula-
tion and the two different metaheuristics developed, a Local Search with a
Simulated Annealing probability factor and a Hybrid Variable Neighborhood
Search. Chapter 6 presents the main results and its comparison. Finally, con-
clusions and future remarks are given in Chapter 7.
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2
Literature Review

2.1
Inventory Routing Problems

Inventory Routing Problems (IRP) are challenging once they have to
minimize costs by solving inventory and routing problems simultaneously, while
avoiding stock-outs and respecting storage capacity limitations. The survey of
Coelho et al. (2014) provides an introduction and an overview of Inventory
Routing Problems. In a IRP basic version, each vehicle performs one route
per time period, starting and ending at the supplier, and deliver products to
a subset of customers. The quantity loaded in each vehicle must respect the
available capacity, that may be different. The production and consumption
rates are constant and deterministic (Bertazzi et al. 2008, Coelho et al. 2014).

There are a significantly number of IRP extensions and in some ver-
sions of the IRP, several products are handled at once (multi-product vari-
ant). Popović et al. (2012) develop a Variable Neighborhood Search (VNS)
metaheuristic for solving a multi-product multi-period IRP in fuel delivery
with multi-compartment homogeneous vehicles, and deterministic consump-
tion that varies over each petrol station and each fuel type. Moin et al. (2011)
propose a hybrid genetic algorithm to solve a multi-period, multi-supplier and
multi-product IRP. Mjirda et al. (2014) solve a multi-product IRP using a
two-phase Variable Neighborhood Search (VNS) metaheuristic. Coelho and
Laporte (2015) propose a branch-and-cut algorithm for a multi-product, multi-
period routing problem in which vehicles are compartmentalized and the cos-
tumers have several tanks. Cordeau et al. (2015) present a decomposition-based
heuristic for the multi-product IRP.

2.2
Ship Routing

It is common to distinguish between three main operation modes in maritime
transport: liner, tramp and industrial shipping. Liner shipping is similar to a
bus service, where fixed schedules and itineraries must be followed. Container
transport belongs to this mode. In the tramp shipping, the maritime transport
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Chapter 2. Literature Review 15

operator follows the availability of cargo in the market, often carrying a mix
of mandatory and optional cargo in order to maximize profit. In the case of
industrial shipping, the operator is the owner of the cargo and controls the
fleet, trying to minimize the cost of cargo transportation. When it comes to oil
transportation, almost all maritime transportation follows these two last modes
of operation (Hemmati et al. 2014). Based on this distinction, the current work
tackles a MIRP which falls under the industrial shipping mode of operation.

Christiansen and Fagerholt (2009) describe a basic MIRP and some of its
extensions. For a basic case, a single product is transported. Storage capacities
are known in all ports (loading and unloading), as the production and demand
rate (assumed constant during the planning horizon). Neither the number of
services, nor the amount loaded or unloaded in a port during the planning
horizon is predetermined. The ports inventory levels should be respected. The
main goal is to develop routes and schedules for a fleet of ships, minimizing
transportation and inventory costs, and meeting the demand within a given
planning horizon. Real-life problems are more complex, with other aspects,
such as consumer or central supplier, inventory constraints for distinct subsets
of ports, variable production or demand rates, several products, charters, and
other. Christiansen and Fagerholt (2009) make a brief survey of authors who
addressed these variations in their work.

Costa (2018) compares MIRP studies presented by several authors,
according to their dimensions, i.e., number of ports, ships, products and
planning horizon. Several of those authors work only on the single-product
variant and with a small fleet, but as the problems dimensions increase,
the greater is its complexity. Therefore, due to its real-case extensions and
dimensions, the MIRP is a difficult and challenging problem regarding to
the development of solution methods. Among many solution methods, this
work adopts a hybrid-metaheuristic approach. Despite not being the MIRP,
Hemmati et al. (2014) and Homsi et al. (2020) achieved remarkable results in
proposing metaheuristics for the resolution of maritime transport problems,
emphasizing the applicability of this type of approach to solving complex
problems.

2.3
Methods for solving MIRP

Several authors have applied heuristics and hybrid methods to solve
different MIRPs in the literature, in theoretical and real-life contexts. Dauzère-
Pérès et al. (2007) designed a decision support system, using a memetic
algorithm, also known as local genetic search or hybrid genetic algorithm,
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to deal with a problem related to a calcium carbonate paste supplier. It
combines a local search heuristic with crossover operators. Christiansen et al.
(2011) used a construction heuristic incorporated in a genetic algorithmic
structure to solve a MIRP with multiple products for the cement industry.
The constructive heuristic is deterministic, but it has parameters that can
be varied to produce different plans. The genetic algorithm is used to search
for parameters that produce good plans from the constructive heuristics.
The constructive algorithm starts with an initial plan, which usually implies
violations of constraints. With each iteration, violations are identified and
attempts are made to postpone or eliminate them. The procedure is expected
to lead to a plan with no capacity violations. However, the final plan may also
contain violations if at any point during construction it is impossible to find a
solution that would improve the critical violation. The algorithm evaluates the
results according to a number of criteria and chooses the one that maximizes
a weighted sum of the criteria scores. The weights used in this sum are the
parameters that the genetic algorithm seeks to optimize.

Siswanto et al. (2011) addressed a ship routing and scheduling prob-
lem with many technical and physical constraints and non-dedicated compart-
ments. To solve this problem, the authors developed a Mixed Integer Linear
Programming (MILP), followed by a greedy one-step heuristic and, based on
this heuristic, proposed a set of heuristics for each sub-problem (route selec-
tion, ship selection, loading and unloading). Song and Furman (2013) also
used a hybrid approach combining mathematical formulation with heuristics
to solve sub-problems and improve a set of given solutions for a MIRP. Uggen
et al. (2013) have developed a heuristic approach based on relax-and-fix and
fix-and-optimize for a MIRP. Hemmati et al. (2016) considered a short-range
inventory routing problem for several products, in which a heterogeneous fleet
of ships transports various products from production sites to consumption sites
in a continuous time frame. A two-phase iterative hybrid metaheuristic called
Hybrid Cargo Generating and Routing has been proposed. In the first phase,
the inventory routing problem is converted into a ship routing and scheduling
problem, and solved by a mathematical formulation. In the second phase, an
adaptive large neighborhood search is applied to improve the solutions. Diz
(2017) developed relax-and-fix and fix-and-optimize heuristics to deal with a
real problem related to the Brazilian offshore oil industry. The relax-and-fix
phase aims to find feasible solutions while the fix-and-optimize seeks to im-
prove the solution obtained. Papageorgiou et al. (2018) presented an extensive
computational study, comparing variants of rolling horizon heuristics, K-opt
heuristics, local branching, solution polishing and hybrid approaches to solve
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a MIRP. Munguía et al. (2019) developed a hybrid approach using MILP for-
mulations to solve sub-problems iteratively. Bertazzi et al. (2019) formulated a
MIRP as a MILP model and designed a three-phase matheuristic to solve the
problem. The first phase (clustering phase) implements the idea of grouping
customers into a set of clusters. In the second phase (routing construction), a
set of routes is built for the clusters generated in the first phase. In the third
phase (optimization), a binary linear programming model is optimally solved
to obtain a feasible solution.

Costa (2018) handled a realistic multi-product MIRP from a Brazilian
oil and gas company. The objective was to develop a decision support tool
to automate the company’s ship scheduling process. The author applied
a combination of relax-and-fix and fix-and-optimize heuristics to solve the
problem, improving the company’s current solutions, with an average execution
time of three hours. Finally, we refer the reader to the work of Papageorgiou
et al. (2014) for a complete overview of the MIRP literature.

2.4
Other Maritime Routing Studies

The company, in which this work is based on, looking for achieve new
methods/approaches aiming to achieve high quality-solutions for its maritime
routing problems. Some partnerships studies has been developed in the last
years. Rodrigues et al. (2016) study a ship routing problem with pickup
and delivery and time windows for maritime oil transportation presenting an
optimization approach based on a mixed integer programming (MIP) model
and an application of two tailor-made MIP heuristics, based on relax-and-fix
and time decomposition procedures. Stanzani et al. (2018) address a real-
life routing and scheduling problem with inventory constraints. Small sized
instances are solved by a mathematical programming software and, given
the difficulties of solving larger examples, they propose a multistart heuristic
method that includes a metaheuristic GRASP and improvement procedures,
and also a rolling horizon heuristic.
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3
Problem Description

Next, we describe the problem and its main features. Let G = (N , E)
denote an undirected graph where N is the set of ports, and E the set of edges
connecting them. To meet a given demand, the company has a heterogeneous
fleet of ships, defined in the set V , transporting different oil products, defined
in the set P , between ports within a given planning horizon H, which is the
number of days evaluated. Each port i ∈ N has a product handling rate Ri

(daily amount that can be loaded/unloaded in port i), and a known production
or demand PDip for product p ∈ Pi (positive values represent production, while
negative ones represent demands), where Pi ⊆ P is the subset of products that
are produced or demanded by port i. Moreover, inventory levels, at each port
i ∈ N for each product p ∈ Pi, must be within a given interval [SMN

ip , SMX
ip ]

during the planning horizon. The time taken by a ship v to traverse an edge
(i, j) ∈ E is given by Tijv. Each ship v ∈ V has a capacity Kv and it is only able
to visit ports in the subset Nv ⊆ N . Draft constraints are also considered in
the problem, taking into account the cargo on the ships and the characteristics
of the ports. To accomplish the draft constraints, the total loading on-board
each ship v when visiting port i must be within a given interval [LMN

iv , LMX
iv ].

Ports and ships may have initial inventory levels, indicated by parameters S0ip

and L0vp, respectively.
As mentioned above, during a planning horizon each port has either a

demand or a production for a specific product p ∈ Pi. However, some demands
can be met by different products, as long as they have the necessary quality.
Thus, we define Pp as the subsets of products, allowed to meet a specific
demand for product p. This transformation allows the model the possibility to
choose which product to use to meet a demand with flexible quality, aiming
the lowest cost. The transformation of one product into another is only allowed
during a loading/unloading operation in a call of a ship in a port.

The objective is to define routes for the available ships, deciding which
ports to visit, and the amount of products to be loaded and unloaded at each
visit, minimizing routing and operational costs. Each port can be visited several
times by the same ship during the planning horizon. Route’s costs relate to
the total distance that each ship must travel in a given solution, where CT

ij is
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the traveling distance associated to edge (i, j) ∈ E . Operational costs relate to
product handling and inventory holding costs at the ports. CH

iv is the handling
cost of loading or unloading one product unit by ship v at port i, while CS

i is
the inventory holding cost at port i. If the ships have to wait to load/unload,
this cost is also take into account as CW

v . Products delivered to ports might
generate earnings that reduce operational costs. EU

ip is the amount that the
company earns for each product p ∈ P unit delivered at port i ∈ N .

Comparing this work to Christiansen et al. (2011), there are some
differences. In their work, products cannot be mixed (compartments on ships,
different silos), production rate/demand varies over time. Besides, there are
peak periods where the ports are ranked in a priority line to decide which
demand meet. Also, the external locations are raw material supplier and they
define an action (loading or unloading) for each visit in a port. On the other
hand, there are some similarities as: a heterogeneous fleet, multi-product, upper
and lower inventory limits, draft restrictions, different vessel capacity, variable
load/unload, ships can start in port or at sea.

3.1
Real Case and Developed Methodologies

In this work, ports are split into national (located on the Brazilian coast)
or international ones. National ports are producers and consumers, while
international ports are exclusively consumers. The demand for international
ports is not mandatory but generate earnings for the company. Production and
demand rates are not necessarily constant, and may vary over the horizon. The
operating and waiting costs for ships in ports are different and known. The
fleet of ships is heterogeneous with restrictions on minimum and maximum
draft, as well as capacity. Their initial positions are known, and may be at sea
or in a port. Initial ship load is known and partial loading and unloading is
allowed.

A critical aspect of real cases is that, in general, it is hard to find feasible
solutions. In many cases, inventory violations occur and the company needs
to find alternative ways (spot charters, for example) to dispose the excess
production or meet incomplete demands, increasing its operating costs. Thus,
this work aims high-quality solutions but we are aware of the infeasibilities
that may occur.

It is challenging to consider all the above aspects in a single approach,
providing high performance results, concerning costs and computational time.
Yet, we tried to cover the highest number possible of them, developing different
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methodologies during this work.
Table 3.1 presents the main differences between the three methodologies.

Initially, we use a discrete-time linear programming mathematical model
to optimize the inventory level (methodology 1). We adopt this approach
to be able to compare with Costa (2018), which also used discrete-time
linear programming mathematical model. In this first stage, the designed
approach uses a Simulated Annealing metaheuristic responsible for ships’
routing and scheduling. Despite the solutions quality, the computational time
is not low enough for practical use and the model does not allow the inclusion
of the multi-product feature straightforwardly. To overcome these issues, a
continuous-time model is then developed without the need to discretize the
time horizon, reducing the number of variables considerably. Lastly, two
different metaheuristics, a local search heuristic with a Simulated Annealing
probability factor and a Hybrid Variable Neighborhood Search, are evaluated
in order to check the solution quality vs computational time (methodologies 2
and 3, respectively). The methodology 2 presents the single and multi-product
variants, while the methodology 3 focuses on the multi-product variant.

METHODOLOGY
1 2 3

Discrete Time X
Continuous Time X X

Single-Product X X
Multi-Product X X

Production and Demand Rates Variable Constant Constant
Simulated Annealing X X

Hybrid VNS X

Table 3.1: Differences between methodologies

As Table 3.1 shows, the production/demand variable rates are not con-
sidered in the continuous-time model, since its implementation is not simple.
Despite this issue, the impact of constant production/demand rates assump-
tion in the final results is small, once the variations in production/demand are
small for the evaluated instances.

In the following chapters, detailed explanations of all stages will be
presented.
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4
Discrete-Time Approach

In the discrete-time approach, the planning horizon is discretized in a
daily base and not allowing a vessel to stay for less than one day in each port.
It is an initial approach, based on the Costa (2018) model, in an attempt to
improve its results. However, this attempt results in a limited approach, which
prevents the development of the multi-product variant, once the number of
variables and, consequently, the computational time are already high. Also,
the number of berths is not defined, allowing two or more ships to be in the
same port at the same time. It does not reflect the reality, once the number of
berths in the ports is limited.

In the methodology presented in this chapter, the routing and scheduling
problems are solved by a Simulated Annealing metaheuristic (Kirkpatrick et al.
1983), while the inventory problem is solved by a discrete-time model. Both
work together to optimize the routing and inventory costs.

The model is responsible for optimize inventory costs, respecting the
problem restrictions as draft and inventory limits. It is the metaheuristic re-
sponsibility to search for neighbor solutions that improve the current solution
through perturbation moves in ships routes and schedules. Each neighbor solu-
tion is defined by a single change of the current solution. In every perturbation
move, the inventory cost for the neighbor solution is obtained from the math-
ematical model and provided to the metaheuristic. The metaheuristic then
evaluates the neighbor solution total cost, compares this cost to the current
solution total cost, keeping the best solution obtained so far.

4.1
Solution Representation and Neighborhoods

Firstly, the solution representation is presented. For each ship v ∈ V , the
solution keeps a list of pairs (i, s), i ∈ Nv and s ∈ Z. This list represents the
complete ship voyage during the planning horizon in order, and each element
gives the port visited and its stay length in days.

To illustrate, Figure 4.1 shows an example of a solution following the
proposed representation. Two ships and four ports are considered in the case
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given, with the total length of stay in each port ranging between one and four
days.

Ship 1

Ship 2

(1, 2)

(2, 1)

(2, 3)

(3, 2)

(4, 1) (3, 4)

(1, 4)

Figure 4.1: Solution representation (port, length of stay).

Note that Ship 1 visits the ports in the following order: 1, 2, 4, and 3
and stays in each port 2, 3, 1 and 4 days, respectively. This time is the total
time (operational and waiting time) spent by the ship 1 in each port. Ship 2
visits port 2, 3 and 1, and stays in each port 1, 2 and 4 days, respectively.

The navigation time Tijv between the ports i and j is also considered
in the solution evaluation. It is calculated by taking the distance between the
ports and dividing by the ship’s speed. Additionally, considering fuel costs and
the ship consumption, the routing cost CT

ij is calculated. So, for each ship v its
total routing cost and time can be obtained by summing all these elements.

The cost evaluation proceeds by providing the solution to the model. The
linear programming mathematical model calculates the inventory (CS

i ), waiting
(CW

v ) and handling (CH
vi) costs and returns this value to the metaheuristic.

Some neighborhoods are responsible for searching for solutions that may
improve the current solution through perturbation moves in ships routes and
schedules. For moves in ships routes, i.e., a change in the order of the ports,
considering an element as a pair (port, stay), the set of possible neighborhoods
is:

– Swap: exchanges two elements in the solution;

– Relocate: removes an element in the solution, inserting in another
position;

– Insert: inserts a new element in a route;

– Delete: deletes an element from a route.

The first two neighborhoods, Swap and Relocate, can be performed in
its intra-route (same route) and inter-route (between two different routes)
versions. For moves in the ship’s schedules, the changes occur only in the
stay. The possible neighborhoods are: exchange two stays in the same route,
or increase / decrease a day of stay of a ship in a specific port, i.e. stay +1 or
stay −1.

The Simulated Annealing metaheuristic is presented in Algorithm 1. It
needs one parameter to run: the total number of iterations (η).
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Algorithm 1: Simulated Annealing metaheuristic - Discrete-Time
Approach (η)
1 L ← {1, .. , `}
2 s← Construct()
3 s∗ ← s
4 for η iterations do
5 k ← Random(L)
6 s′ ← Perturb (s, k)
7 s′ ← Formulation(s′)
8 if Accept(s′, s) then
9 s← s′

10 if f(s) < f(s∗) then
11 s∗ ← s
12 end
13 end
14 end
15 return s∗

Initially, a set of neighborhoods L is defined (Line 1). They can be
randomly selected, and they change either the position of the ports for
each ship, or the length of stay. A constructive heuristic sets an initial
solution and considers it as the best solution s∗ (Lines 2-3). Its motivation
is that starting from a solution in that the ships stay long enough to meet
ports production/demand, the search for high-quality solutions will be faster.
Initially, the number of necessary days to unload the entire inventory is
calculated for all ports (dmaxi), as can be seen in Equation (4-1).

dmaxi = (SMX

i − SMN

i )/Ri ∀i ∈ N (4-1)

Starting from the original position of all ships, assuming all stopped,
the model is solved and total inventory violations are obtained for the entire
time horizon for all ports. These violations are ordered from the largest to the
smallest and associated with its respective ports and number of days (dmaxi).
From this, ports are randomly inserted in the routes, respecting the time
horizon and the inventory model. In order to keep the constructive heuristic
simple, avoiding infeasibility, a port can only be inserted once on each route,
but it can be on different initial routes.

The main loop is executed η times (Lines 4-14), and consists of a
perturbation procedure that moves the solution s to a random neighbor
solution s′ in neighborhood k (Lines 5-6). This perturbation procedure selects
randomly two routes from the solution s. Depending on whether the routes
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are the same or not and their lengths, a subset of possible neighborhoods
among all presented is available. The metaheuristic chooses randomly which
neighborhood k will be evaluated. For each random neighbor solution s′, its cost
evaluation is carried out (Line 7). This evaluation considers routing, scheduling
and inventory costs. The routing costs are calculated by the neighborhood
itself, whereas for the calculation of inventory, handling and waiting costs, the
linear programming model must be executed. As previously mentioned, it is
necessary that the metaheuristic provide the information of which ship services
which port on which day so that the model can be executed. The algorithm
checks if the new solution s′ will be accepted by a pre-established criterion
(Lines 8-13).

This criterion is fulfilled if the cost of the new solution s′ is better than
the cost of s. Also, it is possible to accept a non-improving solution by a
probability factor (Kirkpatrick et al. 1983). Once accepted, s is updated, and
then it is verified if s is better than the best solution obtained so far s∗ (Lines
10-12). The complete procedure is repeated until reaching the limit of the
Simulated Annealing method. The method returns the final solution s∗ in
Line 15. It is worth mentioning that if, with the random movements made
by the metaheuristic, the route exceeds the time horizon, the excess days are
discarded, considering only the evaluated horizon. The final route, within the
time horizon, has its total routing cost (CT ) and the model, for the last time,
provides the inventory (CS

i ), waiting (CW
v ) and handling (CH

vi) cost.

4.2
Mathematical Formulation

As described in the previous section, at each move of the metaheuristic,
the mathematical model is executed to optimize inventory costs, respecting the
restrictions established by the problem. This model follows the single-product
and time-index variables approaches.

The routes of a set of V ships are evaluated. The ships can visit a set of
N ports, in a T horizon of days. Each ship v ∈ V has capacity Kv and can
load qL

vit or unload qU
vit an amount of a single-product on a port i ∈ N on day

t ∈ T . In the discrete-time approach, we do not define the number of berths,
due to its additional complexity to the time-index model. It means that, two
different ships can be in the same port i on the same day t. Also, the ship
v ∈ V can deliver the product in port i ∈ N and profit from it (EU

i ).
The ports i ∈ N have a production/demand PDt

i on day t ∈ T and a
product handling rate Ri. As the metaheuristic does not difference handling
and waiting time, since it would be complex to evaluate the neighborhoods
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moves, the model considers that the handling costs CH
vi are related to the

necessary time to load/unload the established amount and the waiting cost
CW

v is automatically added as the cost of one day of waiting by ship v.
The initial inventory levels s1

i on port i ∈ N and the initial load l1v

on-board ship v ∈ V are given. For t ∈ T , t 6= 1, the inventory level st
i on

port i ∈ N and the total load ltv on-board ship v ∈ V are evaluated and CS
i

represents the inventory holding cost at port i ∈ N . Maximum and minimum
limits for the inventory level (SMX

it and SMN
it ) and total load on-board (LMX

vi

and LMN
vi ) are defined.
In real applications, it is challenging to find solutions for the problem

that meets the limits of cargo on-board ships, and draft and inventory limits
at the ports. Also, it is important to have an indication of how far the solution
is from feasibility, in order to guide the method towards feasible solutions.
Based on this, we relax the draft and inventory limits constraints, penalizing
each violation with a parameter µ. Thus, if the inventory levels on port i ∈ N
on day t ∈ T (sslack

it ) or the total load on-board by ship v ∈ V , on port i ∈ N
on day t ∈ T (lslack

vit ) stay outside the limit ranges, the objective function is
penalized by µ for each unity. The proposed method searches for solutions with
minimum penalties, aiming to achieve feasible solutions if possible.

Once the inventory sub-problem is defined, it is important to explain
how the metaheuristic and the model are connected. The constant yt

vi is the
link between the metaheuristic and the model. A procedure assesses whether
a ship v will be in a particular port i on a given day t . If so, the value of
yt

vi is equal to 1, otherwise equal to 0. This information allows the model to
know the routes of each ship defined by the metaheuristic and to evaluate the
inventory CS

i , handling CH
vi and waiting CW

v costs.
Next, the discrete-time model, based on the one described by Costa

(2018), is presented with its objective function and constraints.

min
∑
t∈T

∑
i∈N

CS

i s
t
i + (inventory costs)∑

t∈T

∑
i∈N

∑
v∈V

(
CW

v yt
vi + CH

vi(qL

vit + qU

vit)
)
− (waiting and handling costs)∑

t∈T

∑
i∈N

∑
v∈V

EU

i q
U

vit + (delivery earnings) (4-2)

µ

(∑
t∈T

∑
i∈N

sslack
it +

∑
t∈T

∑
i∈N

∑
v∈V

lslack
vit

)
(infeasibility penalization)
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subject to

st
i = st−1

i + PDt
i +

∑
v∈V

(
qU

vit − qL
vit

)
∀i ∈ N, t ∈ T\{1} (4-3)

st−1
i +

∑
v∈V

qU
vit + PDt

i ≤ SMX

it + sslack
it +

∑
v∈V

qL
vit ∀i ∈ N, t ∈ T\{1} (4-4)

st−1
i +

∑
v∈V

qU
vit + PDt

i ≥ SMN

it − sslack
it +

∑
v∈V

qL
vit ∀i ∈ N, t ∈ T\{1} (4-5)

st
i ≥ SMN

it − sslack
it ∀i ∈ N, t ∈ T (4-6)

st
i ≤ SMX

it + sslack
it ∀i ∈ N, t ∈ T (4-7)

ltv − lt−1
v =

∑
i∈N

(
qL

vit − qU
vit

)
yt

vi ∀v ∈ V, t ∈ T\{1} (4-8)

ltv ≤ Kv ∀v ∈ V, t ∈ T (4-9)

ltvy
t
vi ≤ LMX

vi yt
vi ∀i ∈ N, v ∈ V, t ∈ T (4-10)

ltvy
t
vi ≥ LMN

vi yt
vi − lslack

vit ∀i ∈ N, v ∈ V, t ∈ T (4-11)

qL
vit ≤ Kvy

t
vi ∀i ∈ N, v ∈ V, t ∈ T (4-12)

qU
vit ≤ Kvy

t
vi ∀i ∈ N, v ∈ V, t ∈ T (4-13)

qU
vit + qL

vit ≤ Ri ∀i ∈ N, v ∈ V, t ∈ T (4-14)

qL
vit, q

U
vit, l

slack
vit ≥ 0 ∀i ∈ N, v ∈ V, t ∈ T (4-15)

sslack
it ≥ 0 ∀i ∈ N, t ∈ T (4-16)

ltv ≥ 0 ∀v ∈ V, t ∈ T (4-17)

As mentioned before, the objective function (4-2) minimizes the oper-
ational costs, considering holding, waiting and inventory costs at the ports,
unloading earnings and infeasibility penalties.

Constraints (4-3) guarantee the daily inventory flow in the ports, contem-
plating its production/demand such as loading and unloading operations. Con-
straints (4-4) and (4-5) force the inventory level to respect limits [SMN

it , SMX
it ],

using the slack variable sslack
it to relax the constraints, allowing violations. Con-

straints (4-6) and (4-7) force that, when the inventory is outside its lower and
upper limits, the slack variable sslack

it must represent the violated amount.
Constraints (4-8) keep the daily variation of the ship’s load due to the

loading and unloading operations performed. Constraints (4-9) express that
the ship’s capacity must be respected. Constraints (4-10) and (4-11) refer to
the maximum and minimum drafts of each port, respectively. For the minimum
draft restrictions, a relaxation is performed, incurring in a penalty if the drafts
are not respected.

Constraints (4-12) and (4-13) indicate that the loads and unloads that
each ship carries out in each port in a period must be less than the capacity of
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each ship. Constraints (4-14) refers to the average maximum daily flow from
the port, which the ship’s loading and unloading must respect. In addition,
Constraints (4-15)-(4-17) specify the variables’ domains.

To exemplify, a single iteration from the developed hybrid-metaheuristic
is presented. The current solution s, presented in Figure 4.2A, has a total
cost of CA. Randomly, the metaheuristic selects the ships 1 and 2 and, also
randomly, the Relocate neighborhood is chosen. The perturbation consists of
removing the element (4,1) from the ship’s 1 route and inserting on ship’s
2 route between elements (3,2) and (1,4). Then, the neighbor solution s′

becomes as shown in Figure 4.2B. The metaheuristic calculates the routing
cost and constants yt

vi for ships 1 and 2 are updated. Constants yt
vi represent

if a ship v will be in a port i on a given day t. The model receives the
changes through y and evaluates the inventory, handling and waiting cost.
Those costs are provided to the metaheuristic, that calculates a total cost CB.
The metaheuristic decides that solution s′ will be accepted. Once accepted, s
is updated and it is verified if s is better then the best solution obtained so far
s∗. If it is, the method keeps this solution.

Ship 1: CT
1,2 + CT

2,3

Ship 2: CT
2,3 + CT

3,4 + CT
4,1

Ship 3: CT
4,1 + CT

1,3

Ship 4: CT
2,3 + CT

3,1 + CT
1,4

Considering 1 day of travel
between all ports for all ships.
Y8

14 = 0 , Y8
13 = 1, Y12

13 = 0
Y6

24 = 1 Y6
24 = 0, Y10

24 = 1

Metaheuristic:
- Routing Cost (CT

ij);
- Scheduling;
- yt

1i e yt
2i

CA = Total cost A

CB = Total cost B

Model:
- Inventory Costs (CS

i);
- Handling Costs (CH

iv);
- Waiting Costs (CW

v);
- Earnings (EU

i);
- Penalties (μ).

Relocate
Neighborhood

Figure 4.2: Example - Discrete-Time Approach
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5
Continuous-Time Approaches

As mentioned in Chapter 4, the discrete-time approach does not con-
template some important MIRP features, as multi-product, product transfor-
mation, single berth availability and separated handling and waiting time,
especially due to its high computational time. To contemplate all these fea-
tures, aiming to obtain better results in a smaller computational time, a new
mathematical formulation is introduced. It is based on the one presented by
Christiansen and Fagerholt (2009), using continuous instead of discrete-time,
allowing a vessel to stay for less than one day in each port. In this approach the
time index on the variables disappears and consequently the number of vari-
ables is considerably reduced. Also, the model is responsible for inventory and
scheduling sub-problems. On the other hand, the variable production/demand
rate is no longer considered since its implementation in the continuous-time
approach would not be simple, here assuming constant values for the planning
horizon.

Besides the model, the metaheuristic also has to change and, in this
approach, it is responsible only for the routing sub-problem. Also, due to the
faster model resolution, it is possible to implement an additional local search
procedure. Two different metaheuristics are developed for the continuous-time
approach, aiming to achieve high-quality solutions. In the first metaheuristic,
a local search with a Simulated Annealing probability factor (SA), a solution
is constructed, followed by a local search procedure. After that, a perturbation
is performed and the solution is accepted or not by a pre-established criterion.
Finally, we run the local search. In the second metaheuristic, a Hybrid Variable
Neighborhood Search (VNS), the first three steps are the same but after the
perturbation a new local search takes place before the solution is accepted.
Figure 5.1 presents the main differences between both approaches.

5.1
Solution Representation and Neighborhoods

The first change is on the metaheuristic. In the continuous-time ver-
sion, the metaheuristic is responsible for the routing sub-problem, while the
scheduling and inventory sub-problems are solved by the mathematical model.
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Local Search with
Simulated Annealing
Probabilty Factor (SA)

Hybrid Variable
Neighborhood
Search (VNS)

1. Construct;
2. Local Search;
3. Perturb;
4. Local Search;
5. Accept or not.

1. Construct;
2. Local Search;
3. Perturb;
4. Accept or not;
5. Local Search.

Figure 5.1: Metaheuristics Differences

In this approach, the solution representation changes and it is represented by
(port, call) instead of (port, stay). Thus, for each ship v ∈ V , the solution
keeps a list of pairs (i,m), i ∈ Nv and m ∈ Z, that represents the complete
ship voyage during the planning horizon in order, and each element gives the
port visited and its call. Assuming a visit of a ship v in a port i. If it is the
first time port i is visited by any ship v ∈ V , its call is marked as 1 and is
represented by the pair (i, 1). If it is the second visit that occurs in port i,
regardless of which ship is, the port’s call is marked as 2 and represented by
(i, 2).

Each ship v ∈ V is only able to visit ports in the subset Nv ⊆ N . We
define a set m ∈Mi of possible calls to sequence the visits in the ports. Thus,
a specific solution for the MIRP, can be defined as a permutation of pairs
(i,m) ∈ Nv ×Mi, indicating the sequence of ports that each ship visits along
with its respective call.

Figure 5.2 shows an example of a solution following the proposed repre-
sentation, with each element on the solution represented as a pair indicating
a port and its call. Two ships and four ports are considered in the given case,
with up to two calls performed at each port. Note that Ship 1 and Ship 2 visit
the ports in the following order: 1, 2, 4, 3 and 2, 3, 1, respectively.

Regarding Port 1, its first call is performed by Ship 2, followed by a
visit from Ship 1. Note that when solving the inventory part of the problem,
the visit (1, 2) of Ship 1 will only be performed after the completion of Ship
2 route, due to visit (1, 1). Moreover, this solution representation solves the
berth problem presented for the discrete-time approach, in which the number
of ships in a port could not be defined. As shown, Ship 1 has to wait for a berth
in Port 1, assuming Port 1 has only a single-berth. For this work, it is adopted
a single-berth per port, but if needed, it can be adjusted by replicating the
port by a set of ports.
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Ship 1

Ship 2

(1, 2)

(2, 1)

(2, 2)

(3, 1)

(4, 1) (3, 2)

(1, 1)

Figure 5.2: Solution representation (port, call).

As mentioned before, in the continuous-time approach, the neighbor-
hoods are responsible for moves in ship’s routes only, unlike the neighbor-
hoods used in the discrete-time approach, detailed in Chapter 4, which are
also responsible for scheduling moves. But despite the neighborhoods being
not the same anymore, they are very similar and consider (port, call) instead
of (port, stay).

For ship routing, i.e., a change in the order of the ports, we develop
neighborhoods of Swap, Relocate, Delete and Insert. The first two neighbor-
hoods are considered in their intra-route (on the same route) and inter-route
(between two different routes) versions. This set of neighborhoods L′ is used
on both developed metaheuristics, a Local Search with a Simulated Annealing
probability factor and a Hybrid Variable Neighborhood Search.

5.2
Local Search with a Simulated Annealing probability factor

The first metaheuristic is a local search heuristic with a Simulated
Annealing probability factor, similar to the one presented in Algorithm 1.
The main difference is that a local search procedure is added, aiming for
higher-quality solutions. It is possible, in this approach, due to the smaller
computational time spent in the continuous-time model execution. Also, the
second difference lies in the constructive procedure, which is no longer the
same. Algorithm 2 starts by building the set of neighborhoods L′ to be used
during the local search step (Line 1). Then, it calls a procedure that builds
an initial solution s considering only each ship’s initial position, calling the
local search before returning the solution. Thus, initial routes for the ships are
not defined, allowing the local search to build the solution iteratively while
optimizing inventory levels (Line 2).

The next steps in the algorithm are the same as presented in section 4.1
(Lines 3 - 6), except the set of neighborhoods, whose change was previously
explained. For the solution total cost evaluation (Line 7), the routing costs
are calculated by the neighborhood itself. In this approach, the metaheuristic
provides the routing information to the model through sets, but it is the model
responsibility to obtain scheduling and inventory costs. Then, the algorithm
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checks if the new solution s′ will be accepted by a pre-established criterion,
same as applied to the discrete-time approach (Lines 8-23). Once the solution is
accepted, a Randomized Variable Neighborhood Descent (RVND) local search
is applied on s′ (Lines 10-19). The RVND procedure starts by shuffling the
set of neighborhoods L′ (Line 10), and running the local search following
the defined random order of neighborhoods (Lines 11-19). For each move s′′

of neighborhood `, the mathematical formulation is executed (Line 13) and
the algorithm checks whether the new solution s′′ is better than s, updating
s accordingly, moving to the next neighborhood if true. After the RVND,
the algorithm verifies if s is better then the best solution obtained so far s∗

(Lines 20-22). The complete procedure is repeated until reaching the maximum
number of iterations η. The method returns the final solution s∗ in Line 25.

Algorithm 2: Local search heuristic with a Simulated Annealing
probability factor - Continuous-Time Approach (η)
1 L′ ← {1, .. , `}
2 s← Construct()
3 s∗ ← s
4 for η iterations do
5 k ← Random(L′)
6 s′ ← Perturb (s, k)
7 s′ ← Formulation(s′)
8 if Accept(s′, s) then
9 s← s′

10 shuffle(L′)
11 for ` ∈ L′ do
12 for s′′ ∈ N`(s′) do
13 s′′ ← Formulation(s′′)
14 if f(s′′) < f(s) then
15 s← s′′

16 break
17 end
18 end
19 end
20 if f(s) < f(s∗) then
21 s∗ ← s
22 end
23 end
24 end
25 return s∗
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5.3
Hybrid Variable Neighborhood Search

The second metaheuristic developed is a Hybrid Variable Neighborhood
Search, and its described in Algorithm 3. Same as the other metaheuristics
already presented, it needs one parameter to run: the total number of iterations
(η).

Algorithm 3: Hybrid VNS (η)
1 L′ ← {1, .. , `}
2 s← Construct()
3 s∗ ← s
4 for η iterations do
5 k ← Random(L′)
6 s′ ← Perturb (s, k)
7 s′ ← Formulation(s′)
8 shuffle(L′)
9 for ` ∈ L′ do

10 for s′′ ∈ N`(s′) do
11 s′′ ← Formulation(s′′)
12 if f(s′′) < f(s′) then
13 s′ ← s′′

14 break
15 end
16 end
17 end
18 if Accept(s′, s) then
19 s← s′

20 if f(s) < f(s∗) then
21 s∗ ← s
22 end
23 end
24 end
25 return s∗

The algorithm follows the same steps as Algorithm 2, where an initial
solution s is constructed and set as the best solution s∗ (Lines 1-3). Also, a
perturbation move randomly selected in the set of neighborhoods L′ is applied
on the current solution s and s′ cost is evaluated (Lines 5-7). Now, comes the
difference: before the acceptance of the neighborhood solution, the Randomized
Variable Neighborhood Descent (RVND) local search is applied on s′ (Lines
9-17). Succinctly, the RVND procedure shuffles the set of neighborhoods
L′ (Line 8), and runs the local search following the defined random order
of neighborhoods (Lines 9-17). For each move s′′ of neighborhood `, the
mathematical formulation is executed (Line 11) and the algorithm checks
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whether the new neighbor solution s′′ is better than s′, updating s′ accordingly,
moving to the next neighborhood if true. After the RVND, the algorithm
decides if the new solution s′ will be accepted by the same pre-established
criterion used in the other algorithms (Lines 18-23). Once accepted, s is
updated, and then it is verified if s is better than the best solution s∗ obtained
so far (Lines 20-22). The method returns the final solution s∗ in Line 25.

5.4
Mathematical Formulation

The proposed mathematical formulation is based on the one described by
Christiansen and Fagerholt (2009), but fixing routing variables as parameters
and including some particular constraints related to the real problem. Based
on a given routing solution, we defineMi as the set of calls on port i, andMiv

as the set of calls on port i performed by ship v. A parameter MF
i indicates

the last call on port i. While the original MIRP problem is defined on the
undirected graph G, as presented in Chapter 3, this subproblem is defined
on an extended graph G ′, considering nodes (i,m) ∈ Nv × Miv, and arcs
(i,m, j, n) ∈ Av ⊆ (Nv ×Miv)× (Nv ×Miv), for each ship v. Moreover, each
ship v ∈ V starts at port N0

v performing call M0
v . Finally, let V B

im be the ship
performing the call just before call m on port i, i.e., (m− 1) ∈MiV B

im
, and V F

i

be the ship performing the last call of port i, i.e., MF
i ∈MiV F

i
.

Recalling Chapter 3, the ships v ∈ V transport different oil products P .
Each port i ∈ N has a known production or demand PDip for product p ∈ Pi,
where Pi ⊆ P is the subset of products that are produced or demanded by
port i. Some products Pp can meet other product’s demand since they have the
necessary quality. In this case, the model can choose which product to use to
meet demand with flexible quality, aiming the lowest inventory violation and
cost. In this work, this is called product transformation. This transformation
is only allowed when a ship v operates in a call m in a port i. It means that
once the ship is in the port, the model has the opportunity to check if any
product p meets the quality of other the required product, but if the ship is
en route, the transformation cannot be evaluated.

Note that the time index does not exist in this approach, but many
parameters and variables have, now, the index p, relative to the multi-product
variant. Tables 5.1 and 5.2 show the parameters and the variables of the model.
All the parameters are the same, despite the index change. Referring to the
variables, there are other changes besides the index, plus three new variables.
Two of them refer to the scheduling sub-problem since, in this approach, the
model is responsible for deciding the MIRP times. The tim variables indicate
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the time in which a call m at port i starts and must respect the planning
horizon H. The twim variables express the waiting time in a call m at port i.
These new variables allow to better evaluate the handling and waiting costs
and they inform how much time the fleet wait to operate, another advantage
of the continuous-time approach. The last ones rimvpp′ refer to the product
transformation, previously exposed.

Name Description
PDip Production/Demand on port i of each product p
Ri Product handling rate on port i
S0ip Initial inventory level on port i of each product p
SMX

ip Maximum inventory level at port i of each product p
SMN

ip Minimum inventory level at port i of each product p
Kv Ships capacity v
L0vp Initial total load on-board ship v
LMX

iv Maximum total load on-board each ship v when visiting port i
LMN

iv Minimum total load on-board each ship v when visiting port i
EU

ip Earnings for each product p unit delivered at port i.
CW

v Ship v waiting cost
CS

i Inventory holding cost at port i
CH

iv Handling cost of loading or unloading one product unit by ship v at
port i

µ Penalizing parameter

Table 5.1: Parameters - Continuous-Time Model - Multi-Product

Next, the objective function and constraints for the multi-product con-
tinuous approach are presented.

min
∑
i∈N

∑
m∈Mi

∑
p∈Pi

CS
i simp + (inventory cost)

∑
v∈V

∑
i∈Nv

∑
m∈Miv

∑
p∈Pi

(
CH

iv (qL
ivmp + qU

ivmp

)
+ CW

v twim) − (waiting and handling costs)

∑
v∈V

∑
i∈Nv

∑
m∈Miv

∑
p∈Pi

EU
ipq

U
ivmp + (delivery earnings) (5-1)

µ

∑
i∈N

∑
m∈Mi

∑
p∈Pi

sslack
imp +

∑
v∈V

∑
i∈Nv

∑
m∈Miv

lslack
ivm

 (infeasibility penalization)

subject to

ljvnp = livmp + qL
jvnp− qU

jvnp −∑
p′∈Pp

rjvnpp′ +
∑

p′∈Pp

rjvnp′p
∀v ∈ V, (i,m, j, n) ∈ Av, p ∈ P (5-2)

LMN
iv − lslack

ivm ≤
∑
p∈P

livmp ≤ LMX
iv + lslack

ivm ∀v ∈ V, i ∈ Nv,m ∈Miv (5-3)
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Name Description
tim Time in which a call m ∈Mi at port i ∈ N starts
twim Waiting time in call m ∈Mi at port i ∈ N
qL

ivmp Amount loaded by ship v ∈ V , on port i ∈ Nv in call m ∈ Miv of
each product p ∈ Pi

qU
ivmp Amount unloaded by ship v ∈ V , on port i ∈ Nv in call m ∈ Miv

of each product p ∈ Pi

simp Inventory level on port i ∈ N in call m ∈ Mi of each product
p ∈ Pi

livmp Total load on-board ship v ∈ V , on port i ∈ Nv in call m ∈ Miv

of each product p ∈ P
sslack

imp Inventory levels outside the limit ranges on port i ∈ N in call
m ∈Mi of each product p ∈ Pi

lslack
ivm Total load on-board outside the limit ranges by ship v ∈ V , on port

i ∈ Nv in call m ∈Miv

rimvpp′ Amount of product p′ ∈ Pp replacing the demand of product p ∈ Pi

during a loading operation in call m ∈ Miv of ship v ∈ V at port
i ∈ Nv

Table 5.2: Variables - Continuous-Time Model - Multi-Product

LMN
jv − lslack

jvn ≤
∑
p∈P

livmp ≤ LMX
jv + lslack

jvn ∀v ∈ V, (i,m, j, n) ∈ Av (5-4)

qL
ivmp ≤ livmp ∀v ∈ V, i ∈ Nv,m ∈Miv, p ∈ Pi (5-5)

∑
p∈P

livmp ≤ Kv −
∑
p∈Pi

qU
ivmp ∀v ∈ V, i ∈ Nv,m ∈Miv (5-6)

tjn = tim + twim + Tijv +
∑
p∈Pi

(
qL

ivmp + qU
ivmp

)
Ri

∀v ∈ V, (i,m, j, n) ∈ Av (5-7)

tim ≥ ti(m−1) +
∑
p∈Pi

(
qL

iV B
im

(m−1)p
+ qU

iV B
im

(m−1)p

)
Ri

∀i ∈ N ,m ∈Mi \ {1} (5-8)

si1p = S0ip + (PDipti1) ∀i ∈ N , p ∈ Pi (5-9)

simp = si(m−1)p + PDip(tim − ti(m−1)) +(
qU

iV B
im

(m−1)p − q
L
iV B

im
(m−1)p

) ∀i ∈ N ,m ∈Mi \ {1}, p ∈ Pi (5-10)

SMN
ip − sslack

imp ≤ simp ≤ SMX
ip + sslack

imp ∀i ∈ N ,m ∈Mi, p ∈ Pi (5-11)

siMF
i

p − (qL
iV F

i
MF

i
p − q

U
iV F

i
MF

i
p) +

PDip(H − tiMF
i

) ≤ SMX
ip + sslack

iMF
i

p

∀i ∈ N ,MF
i 6= 0, p ∈ Pi (5-12)

siMF
i

p − (qL
iV F

i
MF

i
p − q

U
iV F

i
MF

i
p) +

PDip(H − tiMF
i

) ≥ SMN
ip − sslack

iMF
i

p

∀i ∈ N ,MF
i 6= 0, p ∈ Pi (5-13)

tim ≤ H ∀i ∈ N ,m ∈Mi (5-14)

tN 0
v vM0

v
= t0v ∀v ∈ V (5-15)
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lN 0
v vM0

v p = L0vp ∀v ∈ V, p ∈ P (5-16)

qL
ivmp, q

U
ivmp, livmp ≥ 0

∀v ∈ V, i ∈ Nv,m ∈Miv,

p ∈ Pi

(5-17)

lslack
ivm ≥ 0 ∀v ∈ V, i ∈ Nv,m ∈Miv (5-18)

simp, s
slack
imp ≥ 0 ∀i ∈ N ,m ∈Mi, p ∈ Pi (5-19)

tim ≥ 0 ∀i ∈ N ,m ∈Mi (5-20)

rimvpp′ ≥ 0
∀v ∈ V, i ∈ N ,m ∈Mi,

p ∈ Pi, p
′ ∈ Pp

(5-21)

As before, the objective function (5-1) minimizes the operational costs,
considering holding and inventory costs at the ports, unloading earnings and
infeasibility penalties. Constraints (5-2) compute the cargo on-board the ship
at each port call. Constraints (5-3) and (5-4) limit the total cargo on-board
the ship to be within interval [LMN

iv , LMX
iv ], with the slack variable lslack

ivm used
to relax the constraints, allowing violations in the limits. Constraints (5-5) -
(5-6) limit the cargo on-board the ship to respect the ship capacity and the
amount to load and unload. Constraints (5-7) and (5-8) compute the starting
time of a port call. Constraints (5-9) and (5-10) compute the inventory level
at the ports at each call. Constraints (5-11)-(5-13) force the inventory level to
respect limits [SMN

ip , SMX
ip ], but allowing violations using slack variables sslack

imp

to relax the constraints. Constraints (5-14) limit the time to start visits to
be within the planning horizon. Constraints (5-15) - (5-16) set the time from
the ship first call and load on each ship, respectively. Constraints (5-17)-(5-21)
specify the variables’ domains.

As it was done for the discrete-time approach, a single iteration from the
developed hybrid-metaheuristic for the continuous-time approach is presented.
Figure 5.3A shows the current solution s which has a total cost of CA.
Randomly, the metaheuristic selects the Ships 1 and 2, and the Relocate
neighborhood. The perturbation consists of removing the element (2, 2) from
the Ship 1’s route and inserting on Ship 2’s route between elements (3,1) and
(1,1). Figure 5.3B shows the new solution s′.

The metaheuristic calculates the routing cost. The model receives the
changes through the setsAv,Mi,Miv,Nv and evaluates the scheduling, inven-
tory, handling and waiting cost. Those costs are provided to the metaheuristic,
that calculates a total cost CB. If the selected metaheuristic is the local search
with a Simulated Annealing, it decides if the solution s′ will be accepted s and
applies a Randomized Variable Neighborhood Descent (RVND) local search. If
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Ship 1: CT
1,4 + CT

4,3

Ship 2: CT
2,3 + CT

3,2 + CT
2,1

Ship 3: CT
1,2 + CT

2,3

Ship 4: CT
2,3 + CT

3,1 + CT
1,4

A1: {(1, 2, 4, 1), (4, 1, 3, 2)}  
A2: {(2, 1, 3, 1), (3, 1, 2, 2), (2, 2, 1, 1)}
A3: {(1, 3, 2, 4), (2, 4, 3, 3)}
A4: {(2, 3, 3, 4), (3, 4, 1, 4), (1, 4, 4, 2)}  
N1: {1, 3, 4}  N2: {1, 2, 3} N3: {1, 2, 3} N4: {1, 2 , 3, 4}
M1: {1, 2, 3, 4} M2: {1, 2, 3, 4} M3: {1, 2, 3, 4} M4: {1, 2}
M11: {2} M31: {2} M41: {1}
M12: {1} M22: {1, 2} M32: {1}
M13: {3} M23: {4} M33: {3} 
M14: {4} M24: {3} M34: {4} M44: {2}

Metaheuristic:
- Routing Cost (CT

ij);
- Sets (Av, Nv, Mi, Miv).

CA = Total cost A

CB = Total cost B
Model:
- Inventory Costs (CS

i);
- Handling Costs (CH

iv);
- Waiting Costs (CW

v);
- Earnings (EU

ip);
- Penalties (μ).

Relocate
Neighborhood

Figure 5.3: Example - Continuous-Time Approach

the selected metaheuristic is the Hybrid Variable Neighborhood search, before
the acceptance of the neighborhood solution s′, the RVND local search is ap-
plied. Lastly, it is verified if solution s is better than the best solution obtained
so far s∗.
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6
Results

In this chapter, the results of the different methodologies are shown and
discussed. First, the discrete-time results are presented, followed by the results
from the two developed metaheuristics for the continuous-time approach. For
the local search with a Simulated Annealing probability factor both single and
multi-product variants are evaluated. Also, a final comparison takes place, not
only between the developed methodologies but adding a comparison with the
best known solutions from the literature.

6.1
Data and Execution Environment

For all methodologies, the data are the same used by Costa (2018),
contemplating ten real different two-month instances, from August to May.
For each instance, an approximately 60 days horizon is considered. To make
it easier, we can refer to the instances according to their month numbers, i.e.,
August-September as 08-09. Each instance is composed of 18 ports (15 national
and three international ports) in which only a berth is available, a fleet size
ranging between 12 and 15 ships and nine different oil products. Information
about ports, products, ships, locations, distances, ship’s initial load and
position, ship’s speed and consumption, fuel cost, daily production/demand,
initial inventory levels, inventory and draft limits and profits by delivering
product are provided. For confidentiality reasons, this information cannot
be published. Also, the results consider a penalization parameter, which is
defined by the author. The presented results do not represent the company’s
performance. All the costs results presented in this chapter are divided by a
factor.

The metaheuristics and the mathematical formulations were coded using
Julia language v1.0.5. For discrete-time approach, the experiments were per-
formed on a computer with an Intel (R) Core (TM) i5-6300U processor with
8.00 GB of RAM and the model was solved by CBC solver. We tested each in-
stance two times, limiting the metaheuristic to 1000 iterations (η = 1000). For
continuous-time approaches, the experiments were performed on a computer
with an Intel i7-3960 CPU at 3.3GHz and 64 GB of RAM running Linux. The
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model was solved by CPLEX 12.8 solver, running in a single thread. We tested
each instance ten times, limiting the metaheuristic to 250 iterations (η = 250).

6.2
Discrete-Time Approach

Due to the considerable computational time, this section results are
the best obtained of two runs. Also, since this approach is a single product
variant, we sum up the production/demand and the inventory for all products,
considering them as one single product.

Table 6.1 shows the total inventory violations in the 60-day horizon for
all evaluated instances in all ports. They are low and non-repetitive between
ports (72 violations). For a better analysis of the results, Figure 6.1 presents
the results of average, maximum and minimum inventory levels for the 10
different instances. The top line of graphs refers to the maximum level reached,
the middle line corresponds to the average level, and, finally, the bottom line
to the minimum inventory level. The levels represent the inventory amount
divided per inventory capacity. Regarding inventory violations, it is possible
to note that only for some cases, there are minimum levels below zero or
maximum levels exceeding 100%. For most cases, the maximum occupancy
is around 80% to 100%, the average in the range of 40% to 60% and the
minimum 0%, with the exception of some instances such as 08-09, 10-11, 02-
03, reaching 20%. Thus, the result of the model provides satisfactory inventory
levels. An interesting point to be noted is the violation of the 11-12 period is
that it occurs right at the beginning of the horizon. Looking at the previous
period (10-11), it is possible to observe that this violation does not occur.
This indicates that with good planning, carried out in advance, it is possible
to reduce violations. It is also important to note that, in practice, it is highly
unlikely to obtain a planning that does not violate inventory, leading companies
to look for expensive solutions to deal with these violations.

Instance 8-9 9-10 9-10 10-11 11-12 11-12 11-12 12-01
Port 4 6 15 16 4 5 8 3

Violation 8 2 4 14 1 35 5 3

Table 6.1: Inventory Violation - Discrete-Time Model

Although these results are positive, with low and non-repetitive inventory
violations, a point of attention and improvement lies in the computational
time since, for each instance, a run takes approximately 40 minutes. Also,
there are still aspects that are not covered due to the discrete-time model
computational time, as mentioned in Chapter 4. They are: single berth, multi-
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Figure 6.1: Inventory Level- Discrete-Time
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product, product transformation, handling and waiting time. So, aiming for a
formulation that contains these features, the continuous-time approaches are
implemented. Their results are shown in the next section.

6.3
Continuous-Time Approaches

This section presents the results of the continuous-time model for both
developed metaheuristics. Its is important to note that the continuous-time
approach covers the proposed features (single berth, multi-product, product
transformation and handling and waiting time) that the discrete-time was not
able due to its computational time, except the variable production/demand
rate assumed constant in the continuous-time approach.

Therefore, due to their differences, the continuous-time results are not
directly comparable with discrete-time results. Even the single-product variant
cannot be compared since now only a berth per port is available instead of
several ships being able to stop at the same port at the same time. For the
multi-product, the differences are larger because the production/demand rates
are specific for a product, impacting ship’s routing, scheduling and inventory
levels in the ports. Although, regarding computational time and violations, we
see remarkable improvements as will be presented next.

6.3.1
Single Product

The first continuous-time approach presented is the simplest, with a
single product only. To consider that, we sum up the production/demand and
the inventory for all products, considering them as one, as we have done to the
discrete-time model. However, all of the other features were contemplated. The
metaheuristic used was the local search with a Simulated Annealing probability
factor (SA). Furthermore, the presented values are averages obtained in the
ten times each instance was run, or their maximum and minimum values.

In Figure 6.2, average costs for all the instances are presented. They
are divided in routing cost, inventory cost (including here the handling and
waiting cost), total cost and total cost without penalties (total cost deducted
by the violations penalties). The first aspect is that the inventory cost has a
large influence within the total cost, due to the penalization parameter. For two
instances (08-09 and 10-11) that the inventory costs increase, due to violations,
the total cost increases too. Still about the inventory cost, for some instances it
turns to be negative, representing the occurrence of an earning in these months
with the product delivery abroad. In the case of the routing cost, it remains
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very constant for all instances, and in the months that the inventory violations
do not occur, it is the main portion of the total cost. Finally, as expected, the
total cost without the inventory violation penalties tracks the routing cost.
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Figure 6.2: Costs - Continuous-Time - Single Product

Figure 6.3 shows the maximum, average and minimum values for viola-
tions and total cost for the ten evaluated instances. It is possible to notice that
the violations are responsible for increasing the total cost. Also, analyzing two
instances (08-09 and 10-11), a considerable variation between maximum and
average violation values can be observed. Although the standard deviation is
not shown, it can be concluded that when the maximum value is much higher
than the average value, the results deviation are high due to the seeds. Taking
instance 08-09 as an example: the results for nine seeds violates 1 unit the
inventory, but the seed number 10 has a high violation (37). So, this only seed
raises the average value and the deviation. The same analysis can be extended
to 10-11 instance.

The next step is to evaluate the port’s inventory level, but here it is worth
making an observation. The amount of results and information obtained is very
significant. The planner can evaluate the situation port by port, product by
product. However, it is complex to present all the information in text format, so
just the instances average values will be presented. But, again, in spreadsheets,
all the results can be detailed, being really useful for the planner.

In Figure 6.4 the inventory level per call is presented, which is the
inventory amount in a call divided by its capacity, for the ten evaluated
instances. Considering one instance, the maximum represents the maximum
inventory level, obtained in ten runs. It is the average for all products and
ports in the specific call. Same for the average and minimum inventory levels.
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Figure 6.3: Violation - Continuous-Time - Single Product

Notice that for all instances the inventory level does not violate its limits,
neither the upper nor the lower limit, in any call.

In Table 6.2 there is some general information for each instance. All the
values are averages from the ten times each instance was tested. The total
average violation, as we already mentioned, is small (9 units) and, considering
the average of all calls, the ship waiting time (twim) is three and a half days,
what is economically favorable once the ships do not waste much time waiting
to operate in the ports and may visit other ports instead, counting on the
fact that a single berth is always available for the evaluated fleet. The average
computational time is 10 minutes.

Waiting Time (days) Violation(units) Computational Time (s)
08-09 4 5 300
09-10 3.3 0 560
10-11 4.6 4 652
11-12 3.6 0 538
12-01 3.3 0 785
01-02 4.0 0 715
02-03 5.7 0 680
03-04 4.0 0 437
04-05 - 0 595
05-06 2.5 0 683

Table 6.2: General Information - Continuous-Time - Single Product

As mentioned before, we cannot compare these results directly with the
discrete-time results because the continuous-time approach considers more
features, as the availability of only a single berth, the different approach to
address waiting time costs. However, it is quite clear that the continuous-
time results stand out with a shorter computational time (four times faster)
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Figure 6.4: Inventory Level- Continuous-Time - Single Product
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and fewer violations (eight times smaller). For the discrete-time approach, the
computational time was about 40 minutes and violations 72 units, while for
the continuous-time approach, in just ten minutes, the reached violation is
only nine units.

6.3.2
Multi-Product - Simulated Annealing

For the results of this section, the MIRP is solved by a hybrid-
metaheuristic, using the local search with a Simulated Annealing probability
factor procedure. Also, the multi-product feature is added. Nine products are
evaluated and some of them can be transformed, i.e., service other products’
demands if necessary. In Figure 6.5, we see the average costs obtained for each
instance, same as explained for Figure 6.2. As we already know, the inventory
costs have huge impact on the total cost. The routing costs are much smaller
and the total costs without penalties follow them. For some instances, the to-
tal cost without penalties can be smaller than the routing cost. It means that
the inventory costs is negative, i.e, the instance earns money delivering prod-
ucts abroad. Also, we can see that the multi-product costs are larger than the
single-product costs, once the problem complexity increases considerably and
it is more difficult to satisfy the restrictions to avoid violations. Once again,
the instance 08-09 presents the larger costs.
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Figure 6.5: Averages Costs - Multi Product - SA

Figure 6.6 presents the maximum, average and minimum values for
violations and total cost for the ten evaluated instances, similar as Figure
6.3. It is possible to see that, now, every instance has a violation, even if
for some months, this violation is quite small (04-05 and 05-06). Also, the
results present some variance between minimum and maximum values for each
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instance due to the ten different seeds used, and may be larger or smaller
depending on each instance. A seed is a number (or vector) used to initialize
a pseudo-random number generator. If a pseudo-random number generator is
reinitialized with the same seed, it will produce the same sequence of numbers.
It ensures that results are reproducible. Once again, the total cost follows the
same trend as the violation. The violations for the multi-product variant are
higher from those of the single product variant since it is more complex to
satisfy the constraints.
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Figure 6.6: Violation vs Cost - Multi Product - SA

The inventory level is shown in Figure 6.7 and most results of average
of maximum and minimum inventory levels for all products/ports stay inside
limits, except instances 08-09 and 02-03. As has been commented before, these
values are averages. The planner can see exactly which port, in which call has
violations. Furthermore, the average level stays in range 40% - 60% for most
instances.

In Table 6.3, some general information is presented for the SA multi-
product approach. The ship waiting time, considering the average of all calls,
is almost six days, still being a good result. The average violations are larger
than those obtained in the single-product approach. Also, an average value of
16 units is transformed, i.e., 16 units of some products meet other products
demands. The average computational time is 3 minutes.

6.3.3
Multi-Product - Variable Neighborhood Search

The Hybrid Variable Neighborhood Search (VNS) is similar to the
previous one (SA), except for the time the solution is accepted, as shown
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Figure 6.7: Inventory Level - Multi-Product - SA
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Waiting Violation Transformation Computational
Time (days) (units) (units) Time (s)

08-09 6.7 304 19 197
09-10 7.4 170 13 147
10-11 6.1 111 16 162
11-12 5.7 194 16 247
12-01 6.3 164 11 186
01-02 6.2 134 20 188
02-03 5.3 198 21 142
03-04 4.5 167 13 136
04-05 4.9 31 19 212
05-06 4.5 47 10 204

Table 6.3: General Information - Multi Product - SA

in Chapter 5. But this apparently little change can bring significant changes,
that will be discussed later.

Firstly, Figure 6.8 shows the main costs obtained through the Hybrid
VNS methodology, as explained in Figures 6.2 and 6.5 . The analysis remained
the same, with the inventory costs standing out impacting the total cost, due
the violations. In Figure 6.9, once again as Figures 6.3 and 6.6, shows the
maximum, average and minimum values for the violations and total cost for
all evaluated instances.
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Figure 6.8: Costs - Multi Product - VNS

In Figure 6.10 the maximum, average and minimum inventory level for
the ten instances are shown. Except instance 10-11, in which the inventory
level stays below 0% for call number three, all other instances are inside the
range.

Table 6.4 shows average values for some VNS information: the compu-
tational time is about 22 minutes with violation of only 31 units; the product
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Figure 6.9: Violation - Multi Product - VNS

transformation is applied in 16 units and the ships waiting time stays in 5
days.

Waiting Violation Transformation Computational
Time (days) (units) (units) Time (s)

08-09 5.2 43 18 1824
09-10 5.8 46 18 1166
10-11 6.1 19 14 1155
11-12 5.5 48 15 1368
12-01 3.3 51 10 1185
01-02 4.7 11 18 1246
02-03 4.2 53 26 1617
03-04 5.6 33 17 1512
04-05 5.4 7 16 1226
05-06 4.8 1 13 1153

Table 6.4: General Information - Multi Product - VNS

6.4
Methodologies Comparison

In this section, firstly, the local search with a Simulated Annealing
probability factor (SA) and the Hybrid Variable Neighborhood Search (Hybrid
VNS) results are compared. The first aspect to compare is the total cost and its
maximum, average and minimum values are, shown in Figure 6.11. It is possible
to see that even the minimum total cost obtained with the SA method, in many
instances, can be higher or very similar to the maximum total cost obtained
by the Hybrid VNS method. Besides, the SA range is much larger than the
Hybrid VNS, i.e., the maximum and minimum total cost values are closer in the
Hybrid VNS, indicating a smaller deviation of the ten runs. Figure 6.12 shows
the maximum, average and minimum violation for both metaheuristics and
reflects the reason that the Hybrid VNS total costs are much lower than the

DBD
PUC-Rio - Certificação Digital Nº 1821626/CA



Chapter 6. Results 50

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

In
ve

n
to

ry
 L

ev
el

 (
%

)

Call

August-September

Max Average Min

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
ve

n
to

ry
 L

ev
el

 (
%

)

Call

September-October

Max Average Min

-40%

-20%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13In
ve

n
to

ry
 L

ev
el

 (
%

)

Call

October - November

Max Average Min

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

In
ve

n
to

ry
 L

ev
el

 (
%

)

Call

November-December

Max Average Min

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
ve

n
to

ry
 L

ev
el

 (
%

)

Call

December-January

Max Average Min

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

In
ve

n
to

ry
 L

ev
el

 (
%

)

Call

January-February

Max Average Min

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
ve

n
to

ry
 L

ev
el

 (
%

)

Call

February-March

Max Average Min

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

In
ve

n
to

ry
 L

ev
el

 (
%

)

Call

March-April

Max Average Min

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11

In
ve

n
to

ry
 L

ev
el

 (
%

)

Call

April -May

Max Average Min

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14

In
ve

n
to

ry
 L

ev
el

 (
%

)

Call

May-June

Max Average Min

Figure 6.10: Inventory Level - Multi-Product - VNS
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SA ones: the violation in Hybrid VNS are about five times smaller than the SA
violations. In the Figure 6.13, the violations are divided in two different types:
minimum (below 0%) and maximum (above 100%) inventory levels violations,
from SMN

ip and SMX
ip respectively. The minimum violations are larger than the

maximum violations, indicating that the most part of violations is due to the
lack of product in ports, not satisfying the demand. Another important aspect
concerns the low values for standard deviations. It shows that the Hybrid
VNS method performs well in realistic instances, providing solutions with low
variability in practice, regardless of the chosen seed.
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Figure 6.11: Costs Comparison SA vs VNS
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Figure 6.12: Violation Comparison SA vs VNS - Instance

DBD
PUC-Rio - Certificação Digital Nº 1821626/CA



Chapter 6. Results 52

Figure 6.13: Violation Comparison SA vs VNS- general

Figure 6.14 shows the penalties costs and the total cost deducted by the
penalties for SA and Hybrid VNS approaches. The costs, not considering the
violation penalties, are very similar for both methodologies.
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Figure 6.14: Penalties Comparison SA vs VNS

To conclude this first comparison between both metaheuristics, the num-
ber of iterations of the SA is increased to reach the VNS average computational
time. In Figure 6.15 the results for inventory violation are shown, considering
now the increased iteration number of SA. It is possible to see that now SA re-
sults are very competitive with VNS results, since more searches occur. Despite
that, VNS results are still better, i.e., the total inventory violation amount is
smaller. Therefore, the following analyzes will consider the VNS metaheuristic.

Aiming to compare the obtained results with methodologies developed in
this work, we took the final routes generated by Costa (2018) and calculated
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Figure 6.15: Violation increasing SA iteration number

their solution values using this work’s objective function for the continuous-
time model, and call it Best Known Solutions (BKS). It is important to
note that, despite Costa (2018) final routes were obtained using a different
approach, they are the best available results for the evaluated instances to
make a comparison.

The total costs without the penalties are shown in Figure 6.16. The
figure shows the costs, considering routing and operational costs, disregarding
penalization costs for Hybrid VNS and BKS. The results indicate a significant
difference in the costs of our solutions and the ones obtained by Costa (2018).
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Figure 6.16: Costs Comparison VNS vs BKS

The final comparison is between the violations found by each approach,
regarding inventory and draft limits in ports. In Figure 6.17, we analyze the
distributions of the violations for the minimum inventory level at each port
(SMN

ip ), and for the maximum inventory limit at each port (SMX
ip ). Note that,
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in both cases, Hybrid VNS performs significantly better than the method
proposed by Costa (2018).

Figure 6.17: Violation Comparison VNS vs BKS
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7
Conclusions and Future Works

The Maritime Inventory Routing Problem is widely studied by several
authors considering different extensions of the basic case (Christiansen and
Fagerholt 2009), as well as different methods of solution. Through the liter-
ature review it was noticed that there are opportunities for improving the
solution methods and extending formulations to consider realistic aspects of
the problem.

Through metaheuristics combined with mathematical models it was
possible to obtain satisfactory results for a real-life multi-product maritime
inventory routing problem (Multi-product MIRP) applied to the oil and
gas industry. The method applies random movements to modify the routing
solution, running mathematical formulations to optimize the inventory levels
iteratively in the search for better solutions.

Experiments were conducted in a set of ten real-life instances with
considerably large size, with nine products, 18 ports, and a fleet size ranging
between 12 and 15 ships. A relevant aspect is the difficulty of finding feasible
solutions to these instances. Another interesting characteristic regards the
fact that some ports do not have mandatory demands, while in other cases,
products can be replaced by others with similar or higher quality without
affecting the cost of the solution, giving more opportunity to meet the demands
in some ports. Our approaches present good results with low variability,
showing to be useful in practice.

As positive results of this work, we highlight low, non-repetitive inven-
tory violation in ports. For the methodology using a continuous-time model,
the results are even better once, in reduced computational time, inventory vi-
olations remain low or non-existent, depending on the evaluated scenario and
the metaheuristic used. For the Hybrid Variable Neighborhood Search, aver-
age times are around 22 minutes per run, while for Simulated Annealing, the
average times are around 3 minutes per round. These results are remarkable
and allow its practical application for real cases.

To evaluate our approach, we compared it with the solutions provided by
Costa (2018). All routes proposed by the author were reevaluated according
to our criteria, making it possible to compare with the SA and hybrid
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VNS methods. New best solutions were provided for all instances with fewer
inventory violations and at a lower cost. In addition, the computational time
is satisfactory.

There are still aspects not covered in this work and maybe the object
of study of future works, such as the stochastic version of MIRP. Few studies
take into account the various uncertainties associated with this problem (Agra
et al. 2015). In maritime transport, uncertainties are frequent and often related
to climatic conditions, ship reliability, port delays. These uncertainties impact
the ship’s time, whether in navigation or operation, and can cause undesirable
effects such as higher costs, fleet inefficiency, and greater inventory violations.
Another important characteristic of real problems that could be evaluated is
the trans-shipments in terminals. It would also be interesting to assess the
impact of cargo segmentation on ships.
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