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Tracking Maneuver Target Using 3D Position Forecast Model 
with Estimated Speed by Least Squares Method 

Agner Júnior J1, Schulze B2, Mury A R3, Ferro M4, dos Santos M5 

Abstract Tracking targets is a complex process, which requires association algorithms capable of 
handling the use of linear and nonlinear filtering techniques. It is known that the two-dimensional models 
of air traffic control systems are insufficient for the treatment of three-dimensional maneuvers of military 
targets, due to considerable variations in altitude. The work was based on flight dynamics models, which 
describe the evolution of the state of a target, treated as a punctual object in three-dimensional 
trajectories, addressing the problem of its movement uncertainty. The adopted model has application in 
civil and military navigation and surveillance systems, allowing the tracking of targets in real time. The 
Kalman Filter (KF) and the Extended Kalman Filter (EKF) were adopted as state estimators with 
integration through the filter of hybrid systems Interacting Multiple Models (IMM). The innovation of the 
work is in obtaining the scalar velocities of each Cartesian axis to be part of the vector of ܢ୩, 
observations, through the Method of Least Squares, resulting in greater precision than in previous works. 
Numerical examples illustrate the applicability and performance of the proposed method.) 

Keywords: 3D Object Position, Kalman Filter, Interacting Multiple-Model.  

1 Introduction 

This paper develops a new method of obtaining the vector velocity components of measurements of a 
given sensor, from the information of an object in space applying the Method of Least Squares (MLS). 
This new method, applied to the work model presented in Agner Júnior et al. (2020), demonstrates a 
significant improvement in the accuracy of the estimated position of the measured object.  

The problem of predicting the position of maneuvering objects is not a trivial task, as it requires 
several studies and varied analyzes, not only of a conceptual nature, but also of a practical order. Several 
models have been developed to improve existing solutions, such as those described in Frencl and Val 
(2012a), Yuan, Lian and Han (2014), Liu et al. (2018), among others. 

The prediction of object positions is based on the estimation theory, which has the purpose of 
developing estimators, also known as filters, which have the possibility of being applied to engineering 
problems, such as orbit and altitude estimation, power, fault detection, surveillance and determination of 
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the future positioning of targets by radar or sonar, integrated navigation, among others (Bar-Shalom, Li 
and Kirubarajan, 2001). In this context, we try to estimate the state variables of a linear or nonlinear 
stochastic system through filtering. In this way, models are developed to be used in the filtering, which 
seek to represent these state variables in an approximate way, which allows to obtain a solution for 
estimating the future positions of objects in motion. 

Among the great variety of existing dynamic models, two were chosen for the elaboration of this 
work, which deal with objects in displacement: the model with Constant Velocity (CV), implemented 
with the Kalman Filter (KF) to deal with linear filtering and the Constant Turn (CT), implemented with 
the Extended Kalman Filter (EKF) to cover nonlinear filtration. The CV and CT models represent 
particular cases of the kinematic model of Planar Curvilinear Motion with two-dimensional movement 
dynamics (Korbicz et al., 2004). 

To use more than one model in a state estimation problem, one must use a technique that allows the 
use of models in parallel. The approach adopted to work with multiple models in parallel was the 
Interacting Multiple-Model (IMM) algorithm, proposed in Bar-Shalom et al. (1988). The IMM estimates 
the state of a dynamic system and its respective covariance matrix through the weighted sum of the 
estimates of N KF models executed in parallel. It is an estimation tool that in each iteration the weighting 
factors are calculated for the combination of the estimates of each of the filter models. The 
implementation of IMM was necessary, because an object moving in space can develop different behavior 
patterns over time, and the use of only one filter becomes inefficient to adapt to these behavioral 
variations. Thus, the IMM was used to work simultaneously with the KF (using the CV model) and with 
the EKF (using the CT model). 

2 Mathematical Models 

Many of the object positioning prediction techniques are described using models, which are based on the 
behavioral aspects and observations of the target. Behavior is usually represented in the form of a 
dynamic or motion model, also called a state model, describing the evolution of several physical 
quantities, such as position and speed. The aspect that deals with the observations of the object is 
represented through observation models (Frencl, 2010). Thus, to adequately treat the position prediction 
problem, mathematical models are described, taking into account the relevant equations, variables and 
parameters. 

Equations (1) and (2) define KF and EKF, which are described in detail with applications in Bar-
Shalom, Li and Kirubarajan (2001) and Welch and Bishop (2001). However, in this work the Kalman 
Filter solves the general problem of seeking to estimate the state ܠ ∈  ૡ, of a process controlled in܀
discrete time that is governed by the linear stochastic difference equation (1), with a measurement 
୩ܢ ∈  :૞, (2) described by܀

୩ାଵܠ = ୩ܠ୩ࡲ + ୩ܝ୩ࡳ	  ୩, (1)ܟ୩࡮+
୩ାଵܢ = ୩ାଵܠ୩ାଵࡴ +  ୩ାଵ (2)ܞ	

The state estimation performed by Equation (1) obeys the laws that govern the movement of the object 
that is in displacement. These laws, as well as the approach adopted for calculating the measurements 
made by Equation (2), will be described later. The random variables ܟ୩ e ܞ୩ାଵ represent process noise 
and measurement noise, respectively. They are considered normal (Gaussian) distribution, independent, 
identically distributed, with zero mean and covariance Q and R, respectively. Thus, p(ܟ)	~	N(0,Q) e 
p(ܞ)	~	N(0,R). The state transition matrix ଼ࡲ୶଼, in Equation (1), refers to the state of the sample in the 
previous time interval k, to the current state in time k + 1. 

The matrix ଼ࡳ୶ହ refers to the optional control input ܝ୩ ∈  ୩ାଵ. In this approach, theܠ ૞, for state܀
control input ܝ୩ can be assigned as the noise of the sensor position that makes the object position 
measurement. 

Thus, the movement of the sensor has an influence on the position of the object. The ଼ࡳ୶ହ matrix 
controls the effects of ܝ୩, and as this work is considered a static observer, the term ࡳ୩ܝ୩ is not 
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incorporated in the process equation. The ଼࡮୶ହ matrix controls the effects of ܟ୩. The matrix ࡴହ୶଼, in the 
Measurement Equation (2), relates the state to the measure ܢ୩ାଵ. 

To develop this work, it was necessary to adopt a model of observations for the object to be studied. 
Thus, the measurements of a simulated radar system and the object as an aircraft (target) were used as a 
reference. These measures were represented in the form of the vector ܢ୩ = ்[߶୩	୩ߠ	୩ܚ] 	, where ܚ୩ is the 
distance in meters from the object to the observer, ߠ୩ is the azimuth angle measured in degrees from the 
geographical north to the center of the object and ߶୩ is the elevation angle in degrees measured from a 
null horizontal reference (horizontal plane, in the case of sea level) to the center of the object. It is known 
that these measurements are disturbed by noise (or errors), in distance (ܞ௞ܚ), in the azimuth angle (ܞ௞ఏ) and 
in the elevation angle (ܞ௞

థ), the which are assumed to be independent and stationary with Gaussian 
distribution of zero mean and constant variances σ࢘, σఏ e σథ, respectively. 

The study object was treated punctually, described in three dimensions, with the position vector 
represented by (ݐ)ܚ =  ,in Cartesian coordinates. For the dynamic or motion model ,்[(ݐ)ܐ	(ݐ)ܡ	(ݐ)ܠ]
were used as state variables: x, y (horizontal coordinates), h (altitude), ߯ (bow or heading angle - 
horizontal), ߛ (trajectory angle - vertical), v (velocity vector) and a (acceleration vector). 

Equations (3), (4) and (5) are obtained from the derivative of the (ݐ)ܚ components describe the object's 
velocity as a function of Cartesian coordinates relating the instantaneous tangential velocity v (t), ߯ and ߛ. 

(ݐ)௫ܞ = .(ݐ)ܞ cos	(߯(ݐ)). cos	((ݐ)ߛ) (3) 
(ݐ)௬ܞ = .(ݐ)ܞ sin	(߯(ݐ)). cos	((ݐ)ߛ) (4) 

(ݐ)௛ܞ = .(ݐ)ܞ sen	((ݐ)ߛ) (5) 

The differentiation of equations (3), (4) and (5) results in second order differential equations, which 
rearranged can be rewritten respectively by (6), (7) and (8): 

(ݐ)௫܉ = .(ݐ)ܞ̇ cos൫߯(ݐ)൯ . cos൫(ݐ)ߛ൯ − .(ݐ)௬ܞ (ݐ)̇߯ − .(ݐ)௛ܞ cos	(߯(ݐ)).  (6) (ݐ)ߛ̇
(ݐ)௬܉ = .(ݐ)ܞ̇ sen൫߯(ݐ)൯ . cos൫(ݐ)ߛ൯ + .(ݐ)௫ܞ (ݐ)̇߯ − .(ݐ)௛ܞ  (7) (ݐ)ߛ̇

(ݐ)௛܉ = .(ݐ)ܞ̇ sen൫(ݐ)ߛ൯ +
(ݐ)௬ܞ

sen൫߯(ݐ)൯
.  (8) (ݐ)ߛ̇

Knowing that ߯̇(ݐ) is the rate of horizontal angular variation and ̇(ݐ)ߛ is the rate of vertical angular 
variation of the object in spatial displacement. 

For the model, the performance of the tangential acceleration ܉௧௚  (9) was considered, which is 
tangential to the movement and causes the variation of the module of the body speed and the centripetal 
acceleration ܉௖௣, which is perpendicular to the movement and modifies the speed direction, having a 
horizontal component ܉௖௣ఞ	 (10) and another vertical ܉௖௣ఊ	(11). 

௧௚܉ =  (9) (ݐ)ܞ̇
	௖௣ఞ܉ = .(ݐ)ܞ̇ (ݐ)̇߯ =  (10) (ݐ)ఞ߱.(ݐ)ܞ̇
	௖௣ఊ܉ = .(ݐ)ܞ̇ (ݐ)ߛ̇ =  (11) (ݐ)ఊ߱.(ݐ)ܞ̇

2.1 CV and CT Models 

In the CV model, the object moves at a constant speed and in a straight line (Agner Júnior et al., 2020). 
Thus, ܞ௫(ݐ), ܞ௬(ݐ) and ܞ௛(ݐ) are constant and ܉௧௚, ܉௖௣ఞ	 and ܉௖௣ఊ	 are null. Consequently, ܉௫(ݐ), ܉௬(ݐ) 
and ܉௛(ݐ) are null. Thus, the CV and CT model developed in Agner Júnior et al. (2020) was adopted, 
using the same process equations. 

Equation (13), where some of its components remain highlighted due to space limitations, we present 
the process equation used for the CT model. 

ܽଵ଺ = ܾଶଷ = ఊ௞߱(௞߯)ݏ݋ܿ− 	 ೖ்
మ

ଶ
	; ܽଶସ = −߱ఞ௞ − (௞߯)ݏ݋ܿ ఠംೖ

మ

௦௘௡(ఞೖ) . ೖ்
మ

ଶ
	;  
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ܽଶ଺ = ఊ௞߱(௞߯)ݏ݋ܿ− 	 ௞ܶ + ఞ௞߱ఊ௞߱(௞߯)݊݁ݏ
ೖ்
మ

ଶ
 ; ܽଷ଺ = ܾସଷ = ఊ௞߱(௞߯)݊݁ݏ− 	 ೖ்

మ

ଶ
 ; ܽସସ = 1− (߱ఞ௞

ଶ +

߱ఊ௞ଶ ) ೖ்
మ

ଶ
 ; ܽସ଺ = 	ఊ௞߱(௞߯)݊݁ݏ− ௞ܶ − ఞ௞߱ఊ௞߱(௞߯)ݏ݋ܿ

ೖ்
మ

ଶ
 ; and ܽ଺଺ = 1 −߱ఊ௞

ଶ ೖ்
మ

ଶ
 . 

 

෠ܺ௞ାଵ|௞ 	=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 ௞ܶ 0 −߱ఞ௞

௞ܶ
ଶ

2 0 ܽଵ଺ 0 0

0 1−߱ఞ௞
ଶ ௞ܶ

ଶ

2
0 ܽଶସ 0 ܽଶ଺ 0 0

0 ߱ఞ௞
௞ܶ
ଶ

2 1 ௞ܶ 0 ܽଷ଺ 0 0
0 ߱ఞ௞ ௞ܶ 0 ܽସସ 0 ܽସ଺ 0 0

0 0 0 0
߱ఊ௞

sen(߯௞)
௞ܶ
ଶ

2 1 ௞ܶ 0 0

0
߱ఊ௞߱ఞ௞

sen(߯௞)
௞ܶ
ଶ

2 0
߱ఊ௞

sen(߯௞) ௞ܶ 0 ܽ଺଺ 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

. ෠ܺ௞|௞ 

+

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ ௞ܶ

ଶ

2 ௞ܶ 0 ߱ఞ௞
௞ܶ
ଶ

2
0 0 0 0

0 −߱ఞ௞
௞ܶ
ଶ

2
௞ܶ
ଶ

2 ௞ܶ 0
߱ఊ௞

sen(߯௞)
௞ܶ
ଶ

2 0 0

0 ܾଶଷ 0 ܾସଷ
௞ܶ
ଶ

2 ௞ܶ 0 0
0 0 0 0 0 0 ௞ܶ 0
0 0 0 0 0 0 0 ௞ܶ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
்

. ௫ݓ] ௬ݓ ௭ݓ ఞݓ  ்[ఊݓ

(13) 

According to Kang (2008), we can assume the noises ݓ௫, ݓ௬, ݓ௛, ݓఞ and ݓఊ as independent with zero 
mean and variances ߪ௫ଶ, ߪ௬ଶ, ߪ௛ଶ, ߪఠഖ

ଶ  and ߪఠം
ଶ  respectively. For the covariance matrix of the noise 

associated with the state (ܳ௞), we will assume ߪ௫ଶ = ߪ௬ଶ = ߪ௛ଶ = ߪ௤ଶ. ܳ௞ is obtained by doing: ܳ௞ =
E[W୩. W୩

்]. 

2.2 Definition of the Measure Equation 

The radar system provides the vector of measurements  ܢ௞  in polar coordinates. In order to relate this 
vector to the vector of states of the target ܠ௞  (defined in Cartesian coordinates), it was necessary to apply 
a nonlinear transformation, so that ܢ௞  would be written as  ܢ௞ = 	 ୩୸ܠൣ ௫௞୸ܞ	 ௬௞୸ܞ	୩୸ܡ	 ୩୸ܐ	 ௛௞୸ܞ	 	߱ఞ௞௭ 	߱ఊ௞௭ ൧

்
, with 

the measurement having Cartesian coordinates before entering the filter, and then, due to the nonlinear 
nature of the transformation, there was a need to use the equations of the Extended Kalman Filter, to treat 
nonlinearity. 

Using a trigonometric transformation function, the distance (ܚ୩), azimuth angle (ߠ୩) and elevation 
angle (߶୩) measurements, obtained in a polar coordinate system, position components in Cartesian 
coordinates (x , y and h) as presented in (14): 

௞୸ܠ = ௞୸ܡ  ;cos(߶௞)(௞ߠ)௞cosܚ = ௞୸ܐ  cos(߶௞);  and(௞ߠ)௞senܚ =  ௞sen(߶௞) (14)ܚ
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2.2.1 Discrete Least Squares Approximations 

The data obtained from radar measurements are never accurate, as they may contain inherent errors that, 
in general, are not predictable, due to the factors already mentioned. Thus, it is unreasonable to require 
that an approximation function exactly matches the data. According to Burden, Faires and Tasks (2008) 
such a function would introduce oscillations that were not originally present. The need then arises to 
determine a function that adapts to a given set of points in a series of inaccurate measurements. 
According to Burden, Faires and Tasks (2008), the Least Squares Method (LSM), is a way of determining 
a polynomial approximation function. This method consists of finding the function that best fits the given 
set of points. The LSM minimizes the error resulting from the adjustment, by adding the squares of the 
differences between the tabulated values and the values obtained by the approximation. As input data for 
the LSM, the current position measurement data ܢ୩, and the two previous positions (ܢ୩ିଵ and ܢ୩ିଶ) were 
used with the time ୩ܶ that these measurements occur. 

Thus, we have the problem of approximating each of the three sets of ordered pairs (ܯ୩, ୩ܶ), where 
୩ܯ =  :୩; and k = 0, 1 and 2, by a polynomial of the second degree described by (15)ݖ	and	୩ݕ,୩ݔ

ெܲ(ܶ) = ∑ ܽ௞ெܶ௞ଶ
௞ୀ଴ ,	where M = x, y and z (15) 

One must then find the constants ܽ଴ெ ,ܽଵெ 	and	ܽଶெ that minimize the sum of the squares of the 
deviations (E): 

ܧ = ෍൫ܯ௞ −ܲ( ௞ܶ)൯ଶ
ଶ

௞ୀ଴

= 	෍(ܯ௞)ଶ − 2
ଶ

௞ୀ଴

෍ܲ( ௞ܶ).ܯ௞

ଶ

௞ୀ଴

+ ෍(ܲ( ௞ܶ))ଶ
ଶ

௞ୀ଴

 

ܧ = ෍(ܯ௞)ଶ − 2
ଶ

௞ୀ଴

෍ቌ෍ ௝ܽ ௞ܶ
௝

ଶ

௝ୀ଴

ቍ ௞ܯ.

ଶ

௞ୀ଴

+ ෍ቌ෍ ௝ܽ ௞ܶ
௝

ଶ

௝ୀ଴

ቍ

ଶଶ

௞ୀ଴

 

ܧ = ෍(ܯ௞)ଶ − 2
ଶ

௞ୀ଴

෍ ௝ܽ .൭෍ܯ௞ ௞ܶ
௝

ଶ

௞ୀ଴

൱
ଶ

௝ୀ଴

+ ෍෍ ௝ܽܽ௡ ൭෍ ௞ܶ
௝ା௡

ଶ

௞ୀ଴

൱
ଶ

௡ୀ଴

ଶ

௝ୀ଴

 

(16) 

(17) 

(18) 

For E to have a minimum it is necessary that: 

ܧ߲
߲ ௝ܽ

= 0, ݆ = 0, 1	and	2 (19) 

ܧ߲
߲ ௝ܽ

= −2෍ܯ௞ ௞ܶ
௝

ଶ

௞ୀ଴

+ 	2෍ܽ௡

ଶ

௡ୀ଴

෍ ௞ܶ
௝ା௡

ଶ

௞ୀ଴

 (20) 

The one described in Equation (19), constitutes a system of n + 1 (in this case 3) unknowns ௝ܽ  and n + 
1 equations (in this case also 3), called normal equations (21): 

෍ܽ௡

ଶ

௡ୀ଴

෍ ௞ܶ
௝ା௡

ଶ

௞ୀ଴

= ෍ܯ௞ ௞ܶ
௝

ଶ

௞ୀ଴

, ݆ = 0, 1	and	2 (21) 

These last equations (21) can be written as a system in the form: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ܽ଴ெ෍ ௞ܶ

଴
ଶ

௞ୀ଴

+ ܽଵெ෍ ௞ܶ
ଵ

ଶ

௞ୀ଴

+ 	ܽଶெ෍ ௞ܶ
ଶ

ଶ

௞ୀ଴

= ෍ܯ௞ ௞ܶ
଴

ଶ

௞ୀ଴

ܽ଴ெ ෍ ௞ܶ
ଵ

ଶ

௞ୀ଴

+ ܽଵெ෍ ௞ܶ
ଶ

ଶ

௞ୀ଴

+ 	 ܽଶெ෍ ௞ܶ
ଷ

ଶ

௞ୀ଴

= ෍ܯ௞ ௞ܶ
ଵ

ଶ

௞ୀ଴

ܽ଴ெ෍ ௞ܶ
ଶ

ଶ

௞ୀ଴

+ ܽଵெ෍ ௞ܶ
ଷ

ଶ

௞ୀ଴

+ 	 ܽଶெ෍ ௞ܶ
ସ

ଶ

௞ୀ଴

= ෍ܯ௞ ௞ܶ
ଶ

ଶ

௞ୀ଴

 (22) 
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Thus, solving the system described in (22), for the three values of M, where: M and ܯ௞ =
௞ݔ ௞ݕ, 	and	ݖ௞; k = 0, 1 and 2, we find the values for the constants ܽ଴ெ ,ܽଵெ 	and	ܽଶெ for the three 
coordinates (x, y, z). Thus, substituting in Equation (15) we obtain the three polynomials that roughly 
describe the position of the target in Cartesian coordinates, as a function of time. With these polynomials, 
we apply the derivative as a function of time to obtain the polynomial that describes the velocities in 
Cartesian coordinates: 

ெݒ = ௗ(௉ಾ(்))
ௗ்

,	where M = x, y and z (23) 

In this way, we obtain the value of the velocities in x, y and z for the vector of measurements ܢ௞ , 
replacing the value of T, of the current measure, in the polynomials of (23). The azimuth and elevation 
angles of the target, in each sampling, are obtained from the projection of these velocity vectors. Thus, the 
angular velocity ߱ఞ௞

௭  could be obtained from the difference between the current and previous azimuth 
angle, divided by time. The same procedure was applied to obtain ߱ఊ௞

௭ , from the elevation angle. 
Following the same principle, angular accelerations, which were used in the matrix ܪ௞ାଵ, were obtained 
from the difference between the current and the previous angular velocity, divided by the time between 
them.  

The same procedures used in Agner Júnior et al. (2020) were adopted to perform a nonlinear 
transformation of the target position and obtain the measurement vector used, given by ܚ௞, ߠ୩ and ߶୩. 

The covariance matrix of the noise associated with the measure (ܴ௞	ା	ଵ), the nonlinear vector function 
that relates the state variables to the measures, denoted by ݂ℎ(݇	 +  ௞ାଵ) and the matrix resulting fromܠ,1	
the Jacobian matrix calculation the function ݂ℎ(݇	 +  ଵ, were the same as those	ା	௞ܪ ௞ାଵ) denoted byܠ,1	
used in Agner Júnior et al. (2020). 

For initialization of the models, the first two samples were considered, as presented in Agner Júnior et 
al. (2020). One method of initializing the covariance matrix is to define it as ଴ܲ|଴ = 	 ଶ.ܳ௞ߙ , the typical 
value being ߙ = 10. ܳ௞ represents the covariance of errors associated with the process. 

Process noise was adopted as white when accelerating for the models used. The standard deviation of 
the process noise (ߪ௤) for the CV model was defined as in Agner Júnior et al. (2020), ߪ௤ 	= 	α	.ܽ௠௔௫, 
where 0 < α < 1 and ܽ௠௔௫ is the maximum acceleration, and were defined empirically as α = 0.7 and  
ܽ௠௔௫ 	= 5m/sଶ, with that, ߪ௤ = 3,5m/sଶ. In the CT model, the noise level is higher than in the CV 
model, as the uncertainty is greater at the time of the maneuvers. Empirically defined and α = 0.8 and 
ܽ௠௔௫ = 125m/sଶ, the standard deviation of the process noise (ߪ௤ = 100m/sଶ), the noise in the turning 
rates as  ߪఠഖ = ఠംߪ = 0,044rad/sଶ, the noise of angular acceleration rates (ߪఠ̇ഖ = ఠ̇ംߪ = 5rad/sଶ) for 
the CT. The measurement noise depends directly on the characteristics of the modeled sensor. In the 
trajectories in which these noises were considered, a standard deviation was used in the distance of 
ܚߪ 	= 	75m, in the azimuth angle of ߪఏ 	= 	0,0175୭ and in the elevation angle of ߪథ 	= 	0,0175୭, as in 
Agner Júnior et al. (2020) and Frencl (2010). 

For the definition of the elements of the transition matrix (Π) of the IMM algorithm, the time interval 
for obtaining each sample of 4 seconds was adopted, the estimated time for the displacement permanence 
in a linear manner of 200 seconds (CV) and the estimated time for a 20-second nonlinear trajectory (CT), 
thus Π is given by (24): 

П = ቂ0,99 0,01
0,1 0,9 ቃ (24) 

3 Simulation Results 

To evaluate the model, a comparison was made with some results presented in Agner Júnior et al. (2020), 
Frencl (2010) and Frencl and Val (2012b). These were chosen for comparison with the results of this 
work, as they present three-dimensional models with innovative techniques. In Agner Júnior et al. (2020), 
a new 3D model was proposed to be applied with KF and EKF, in Frencl (2010) and Frencl and Val 
(2012b) there was innovation related to the calculation of angular velocity. These studies have tests 
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described in a level of detail sufficient to allow their reproduction and comparison. The trajectories 
compared to are zigzag type, formed by seven stretches, as in Figure 1 (a). 

 
Fig. 1 (a) Zigzag Maneuver Trajectory. (b) Actual trajectory with altitude change. 

The measure used to evaluate this work was the RMS error obtained by comparing the trajectory 
predicted by the model at each instant with the actual future position of the object, for the different 
displacements performed with time evolution for the position vector, given by (25), where k is the order 
of counting the samples, i are the Cartesian axes, ݏ݁ݎ௞௜  ∈ R are the residual vectors calculated by the 
differences between the position of the sample and the position estimate calculated by the models, and n 
is the number of data from the trajectory or the stretch of the trajectory. From the n values obtained from 
RMS௞୧ , the average RMS was calculated for each position component, given by (26). The criteria adopted 
by Agner Júnior et al. (2020) and Frencl (2010), also used here, were the average of  RMSതതതതതത௜  (32), and the 
norm of  RMSതതതതതത (26): 

RMS௞୧ 	= 	ටଵ
௞
	൫ݏ݁ݎ௞௜ ൯

்
௞௜ݏ݁ݎ , k = 1, 2,..., n; i = x, y or h (25) 

RMSതതതതതത௜ 	=
∑ ୖ୑ୗೖ

೔೙
ೖసభ

௡
, k = 1, 2,..., n; i = x, y or h;  ‖RMSതതതതതത‖௫௬௛ 	= 	ටRMSതതതതതത௫ଶ 	+ RMSതതതതതത௬ଶ + RMSതതതതതത௛ଶ (26) 

In order to make it possible to compare the works, the same adjustment parameters mentioned in 
Agner Júnior et al. (2020) and Frencl (2010) were adopted. Therefore, T = 4s,ߪ௥ଶ 	= 	75ଶ, ߪఞଶ 	= 	0,0175ଶ 
and ߪఊଶ 	= 	0,0175ଶ , where T is the sampling period, ߪ௥ଶ is the variance of the radar range, ߪఞଶ is the 
azimuth angle variance and ߪఊଶ is the elevation angle variance. As in Agner Júnior et al. (2020) and Frencl 
(2010), the initial state estimate was used: ܠො଴|଴ 	= 	 	ݏ/196,16݉	30000݉−] − 30000݉	154,98݉/
 .0]୘	0		0		600m	ݏ

One of the trajectories used for comparison with Agner Júnior et al. (2020) and Frencl (2010) was that 
of a plane with a vertical inclination of 30º in relation to the horizontal plane xy. 

Comparing (a) and (b) of Figure 2, the model of this work performed better than that of Agner Júnior 
et al. (2020) and Frencl (2010), both for each of the seven stretches presented and for the trajectory as a 
whole. 

 
Fig. 2 ‖RMSതതതതതത‖ chart. Plane of 30º. (a)Source:Frencl (2010). (b)Source:Agner Júnior et al. (2020). (c)Result of this work. 

The other way used to evaluate the effectiveness of the model described in this study was the 
comparison with real data. Simulations were carried out to compare the model presented, using the 
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hypotheses adopted for the noise described above, with the real system used in a Brazilian Navy Ship 
(BNS). The actual aircraft trajectory data used in the tests were obtained from the Operational Evaluation 
(OE) tests of a BNS. The OE tests were designed to verify the result of a shooting solution for firing a 
4.5-inch cannon projectile, when tracking aircraft. The Cartesian system (x, y, h) was used as the source 
reference. The trajectories were covered by the aircraft with a speed of around 360km/h. The first two 
trajectories were traveling a path with upward vertical movement (illustrated in Figure 1 (b)), and the 
third followed a path with horizontal change of course. The starting and ending positions of the three 
trajectories were the same as those used by Agner Júnior et al. (2020). For the first trajectory, the 
comparison between results showed an improvement of 88.995% in the performance of the proposed 
model when compared to the data obtained in the OE. For the second, it showed an improvement of 
87.838% and for the third, an improvement of 72.307%. 

4 Conclusion 

To handle forecasting the position of objects with a change in their displacement profile. Three-
dimensional Constant Speed and Constant Turn models were chosen, which are based on the Cartesian 
coordinate system. Analyzing the results of the tests performed with these models presented, it is possible 
to verify that both the CV and the three-dimensional CT, were able to satisfactorily estimate a next 
position based on the positions of the previous samples for all the tested paths. The CT model is the most 
significant, as it can work in arbitrary planes of space, increasing the possibility of being able to maintain 
an adequate prediction of the position of objects during their displacement. The trajectory described by 
the accompanied object may be contained in a plane parallel to that formed by the x and y axes, but which 
is rotated on the z axis. The proposed approach was validated by the results of the tests presented, which 
were compared with the results of other works in the literature and also using real data obtained from BN. 
Thus, the main contribution of this work was to obtain the scalar velocities of each Cartesian axis to be 
part of the vector of ܢ௞ . These velocities were deduced from three linear functions, one for each Cartesian 
axis, obtained from the derivative of three second degree functions elaborated by the Method of Least 
Squares, from the target position data of the current measure and two previous measures, resulting in 
greater accuracy than in previous work for tracking maneuver target using 3D position forecast model. 
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